
STACIE
Release 1.0

Gözdenur Toraman, Toon Verstraelen

Jun 26, 2025

Contents

1 Getting Started 3
1.1 Installation . 3
1.2 Licenses . 4
1.3 Usage Overview . 4
1.4 How to Cite . 5

2 Theory 7
2.1 Notation . 7
2.2 STACIE Algorithm Overview . 9
2.3 Model Spectrum . 11
2.4 Parameter Estimation . 14
2.5 Frequency Cutoff . 20

3 Preparing Inputs 25
3.1 How to Prepare Sufficient Inputs for STACIE? . 25
3.2 Reducing Storage Requirements with Block Averages 27
3.3 Recommendations for MD Simulations . 29

4 Properties Derived from the Autocorrelation Function 31
4.1 Uncertainty of the Mean of Time-Correlated Data 31
4.2 Integrated and Exponential Autocorrelation Time 33
4.3 Shear Viscosity . 35
4.4 Bulk Viscosity . 40
4.5 Thermal Conductivity . 42
4.6 Ionic Electrical Conductivity . 43
4.7 Diffusion Coefficient . 45

5 Worked Examples 49
5.1 Minimal Example . 49
5.2 Uncertainty of the Mean of Time-Correlated Data 60
5.3 Applicability of the Lorentz Model . 69
5.4 Diffusion on a Surface with Newtonian Dynamics 77
5.5 Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) . . . 93
5.6 Bulk Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 108
5.7 Thermal Conductivity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 114
5.8 Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) . . 121
5.9 Utility Module for Plots Reused in Multiple Examples. 146

i

6 References 149

7 Glossary 153

8 Development 155
8.1 Contributor Guide . 155
8.2 Development Setup . 156
8.3 Changelog . 157
8.4 How to Make a Release . 158
8.5 Application Programming Interface . 158

9 Code of Conduct 187
9.1 Our Pledge . 187
9.2 Our Standards . 187
9.3 Enforcement Responsibilities . 188
9.4 Scope . 188
9.5 Enforcement . 188
9.6 Enforcement Guidelines . 188
9.7 Attribution . 189

Python Module Index 191

Index 193

ii

STACIE, Release 1.0

STACIE is a STable AutoCorrelation Integral Estimator.
STACIE is developed in the context of a collaboration between the Center for Molecular Modeling
and the tribology group of Labo Soete at Ghent University. STACIE is open-source software
(LGPL-v3 license) and is available on GitHub and PyPI.

This is a PDF version of the online documentation of STACIE. The latest version of the documen-
tation can be found at https://molmod.github.io/stacie/.

Please cite the following in any publication that relies on STACIE:

Gözdenur, T.; Fauconnier, D.; Verstraelen, T. “STable AutoCorrelation Integral Estimator
(STACIE): Robust and accurate transport properties from molecular dynamics simulations”
arXiv 2025, arXiv:2506.20438.

This manuscript has been submitted to The Journal of Chemical Information and Modeling and
the citation records will be updated when appropriate.

A follow-up paper is nearly completed that will describe in detail the calculation of shear viscosity
with STACIE:

Gözdenur, T.; Fauconnier, D.; Verstraelen, T. “Reliable Viscosity Calculation from High-
Pressure Equilibrium Molecular Dynamics: Case Study of 2,2,4-Trimethylhexane.”, in prepa-
ration.

In addition, we are preparing another follow-up paper showing how to estimate diffusion coef-
ficients with proper uncertainty quantification using STACIE, which is currently not fully docu-
mented yet.

Copy-pasteable citation records in various formats are provided in How to Cite.

Contents 1

https://molmod.ugent.be/
https://www.ugent.be/ea/emsme/en/research/soete
https://ugent.be/
https://github.com/molmod/stacie
https://pypi.org/project/stacie
https://molmod.github.io/stacie/
https://arxiv.org/abs/2506.20438

STACIE, Release 1.0

2 Contents

CHAPTER 1

Getting Started

STACIE is a Python software library that can be used interactively in a Jupyter Notebook or em-
bedded non-interactively in larger computational workflows.

To get started:

• Install the stacie Python library (see installation).
• Understand and accept the open source licenses we use.

• Get a bird’s-eye view of how to use STACIE.

• Know how to cite STACIE when using it for your research.

A basic understanding of the theory is highly recommended to ensure that you get the right result
for the right reason. The documentation contains several worked examples that you can use as a
starting point for your own research.

1.1 Installation
Before you begin, ensure that you have the following installed:

• Python version 3.11 or higher

• Pip

Additional dependencies will be installed using the pip command below. Familiarity with Pip is
assumed. We recommend performing the installation within a Python virtual environment.

To install STACIE, use the following shell command:

pip install stacie

3

https://www.python.org/
https://pip.pypa.io/
https://pip.pypa.io/
https://docs.python.org/3/library/venv.html

STACIE, Release 1.0

1.2 Licenses

1.2.1 Source code license
STACIE is free software: you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

STACIE is distributed in the hope that it will be useful, butWITHOUTANYWARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this pro-
gram. If not, see https://www.gnu.org/licenses/.

1.2.2 Documentation license
STACIE’s documentation is distributed under the Creative Commons CC BY-SA 4.0 license.

1.3 Usage Overview
This section provides an overview of how to use STACIE. More detailed information can be found
in the remaining sections of the documentation.

The STACIE algorithm provides robust and reliable estimates of autocorrelation integrals without
requiring extensive adjustment of its settings. Users simply provide the relevant inputs to STACIE:
the time-correlated sequences in the form of a NumPy array, a few physical parameters (such as
the time step), and a model to fit to the spectrum. This can be done in a Jupyter notebook for
interactive work or in a Python script.

The most important inputs for STACIE are time series data on an equidistant time grid. You can
provide multiple independent sequences of the same length to reduce uncertainties. The analysis
returns a result object including the following attributes:

• acint: The integral of the autocorrelation function.

• corrtime_int: The integrated autocorrelation time.

• corrtime_exp: The exponential autocorrelation time (if supported by the selected model).

The estimated uncertainties are accessible through the acint_std, corrtime_int_std, and cor-
rtime_exp_std attributes, respectively. In addition, intermediate results of the analysis can be
accessed, e.g., to create plots using the built-in plotting functions.

Many (transport) properties are defined in terms of an autocorrelation integral. They require
slightly different settings and preprocessing of the input data. STACIE’s documentation contains
instructions for the properties we have tested. In addition, we provide worked examples that show
in detail how STACIE is used in practice.

If you plan to produce publication-quality research with STACIE, the analysis inevitably becomes
an iterative process. The main difficulty is providing sufficient data for the analysis, but what con-
stitutes “sufficient” only becomes clear after an initial analysis. STACIE’s documentation contains
a section on preparing inputs to help you with this process.

Finally, we encourage you to delve into the theory behind STACIE. Although we try to make
STACIE usable without a full understanding of the technical details, a good understanding will
help you get the most out of it.

4 Chapter 1. Getting Started

https://www.gnu.org/licenses/
https://creativecommons.org/licenses/by-sa/4.0/

STACIE, Release 1.0

1.4 How to Cite
When using STACIE in your research, please cite the STACIE paper in any resulting publication.
The reference is provided in several formats below:

1.4.1 Main STACIE Paper
This paper introduces STACIE and should be cited in any publication that relies on STACIE. The
manuscript has been submitted to The Journal of Chemical Information and Modeling, and the
citation records below will be updated when appropriate.

• BibTeX:

@article{Toraman2025STACIE,
title = {STable AutoCorrelation Integral Estimator (STACIE): Robust and accurate␣

↪transport properties from molecular dynamics simulations},
url = {https:))arxiv.org/abs/2506.20438},
doi = {10.48550/arXiv.2506.20438},
publisher = {arXiv},
author = {G\"{o}zdenur Toraman and Dieter Fauconnier and Toon Verstraelen},
year = {2025},
month = {jun}

}

• EndNote

%0 Journal Article
%A Toraman, Gözdenur
%A Fauconnier, Dieter
%A Verstraelen, Toon
%D 2025
%T STable AutoCorrelation Integral Estimator (STACIE): Robust and accurate transport␣

↪properties from molecular dynamics simulations
%J arXiv
%U https:))arxiv.org/abs/2506.20438
%R 10.48550/arXiv.2506.20438
%8 June

• RIS (ProCite, Reference Manager)

TY - JOUR
AU - Toraman, Gözdenur
AU - Fauconnier, Dieter
AU - Verstraelen, Toon
PY - 2025
TI - STable AutoCorrelation Integral Estimator (STACIE): Robust and accurate transport␣

↪properties from molecular dynamics simulations
JO - arXiv
UR - https:))arxiv.org/abs/2506.20438
DO - 10.48550/arXiv.2506.20438
PB - arXiv
DA - June
ER -

1.4. How to Cite 5

STACIE, Release 1.0

1.4.2 Shear Viscosity Calculations
The following paper describes in detail the calculation of shear viscosity with STACIE.

• BibTeX:

@article{Toraman2025ShearViscosity,
title = {Reliable Viscosity Calculation from High-Pressure Equilibrium Molecular␣

↪Dynamics: Case Study of 2,2,4-Trimethylhexane.},
author = {G\"{o}zdenur Toraman and Dieter Fauconnier and Toon Verstraelen},
year = {2025},
note = {in preparation}

}

• EndNote

%0 Journal Article
%A Toraman, Gözdenur
%A Fauconnier, Dieter
%A Verstraelen, Toon
%D 2025
%T Reliable Viscosity Calculation from High-Pressure Equilibrium Molecular Dynamics:␣

↪Case Study of 2,2,4-Trimethylhexane.
%Z in preparation

• RIS (ProCite, Reference Manager)

TY - JOUR
AU - Toraman, Gözdenur
AU - Fauconnier, Dieter
AU - Verstraelen, Toon
PY - 2025
TI - Reliable Viscosity Calculation from High-Pressure Equilibrium Molecular Dynamics:␣

↪Case Study of 2,2,4-Trimethylhexane.
N1 - in preparation
ER -

6 Chapter 1. Getting Started

CHAPTER 2

Theory

This section focuses solely on the autocorrelation integral itself. The (physical) properties associ-
ated with this integral are discussed later.

Some derivations presented here can also be found in other sources. They are included to enhance
accessibility and to provide all the necessary details for implementing STACIE.

First, the notation is defined, and an overview is presented of how STACIE works. The derivation
comprises three main parts:

• A model for the low-frequency part of the power spectrum,

• an algorithm to estimate the parameters of this model, from which the autocorrelation inte-
gral and its uncertainty can be derived,

• and an algorithm to determine the frequency cutoff used to identify the low-frequency part
of the spectrum.

2.1 Notation
The following notation is used throughout STACIE’s documentation.

2.1.1 Special functions
• Γ(𝑧) is the Gamma function.

• 𝛾(𝑧, 𝑥) is the lower incomplete Gamma function.

2.1.2 Statistics
• Several symbols are used to denote time:

– 𝑡 is an absolute time.

– 𝑡0 is a reference point on the time axis.

– Δ𝑡 is a time difference or lag.

7

STACIE, Release 1.0

– 𝜏 denotes a relaxation or autocorrelation time, and usually has a subscript int or exp to
distinguish between integrated and exponential autocorrelation times.

– ℎ is the time step of a discretized time axis (with equal spacing between the grid points).

– Integer steps on a discretized time axis are denoted by indices 𝑛 or 𝑚; the difference
between them is Δ.

• 𝑝𝑥(𝑥) is the probability density function of �̂�.
• A hat is used for all stochastic quantities, including functions of stochastic quantities. This
is more general than the common practice of using hats for statistical estimates only. We
find it useful to clearly identify all stochastic variables. For example:

– If ℐ is the ground truth of the autocorrelation integral, then ̂ℐ is an estimate of ℐ.

– The sampling variance is denoted as �̂�2
ℐ .

– The sampling covariance is denoted as ̂𝐶𝑎,𝑏.

– The sampling covariance matrix of two stochastic vectors is denoted as �̂�𝐚,𝐛.

– A sample point from a distribution 𝑝𝑎(𝑎) is denoted as ̂𝑎.
– A realization of a continuous stochastic process 𝑝𝑎(𝑡)[𝑎] is written as ̂𝑎(𝑡).
– Similarly, a sample from a discrete stochastic process 𝑝𝑎𝑛[𝑎] is written as ̂𝑎𝑛.

• Expected values are denoted as:

– E[⋅] is the mean operator.

– VAR[⋅] is the variance operator.

– STD[⋅] is the standard deviation operator.

– COV[⋅, ⋅] is the covariance operator.

• The Gamma distribution with shape 𝛼 and scale 𝜃 is denoted as:

𝑝Gamma(𝛼,𝜃)(𝑥) = 1
𝜃𝛼Γ(𝛼)𝑥𝛼−1𝑒−𝑥/𝜃

• The Chi-squared distribution with 𝜈 degrees of freedom is a special case of the Gamma dis-
tribution:

𝑝𝜒2
𝜈
(𝑥) = 1

2𝜈/2Γ(𝜈/2)
𝑥𝜈/2−1𝑒−𝑥/2 = 𝑝Gamma(𝜈/2,2)(𝑥)

2.1.3 Discrete Fourier Transform
• 𝑥𝑛 is an element of a real periodic sequence 𝐱 with period 𝑁 .

• 𝐗 = ℱ[𝐱] is the discrete Fourier transform of the sequence, complex and periodic with period
𝑁 .

• When 𝑀 samples of the sequence are considered, they are denoted as 𝐱(𝑚) with elements
𝑥(𝑚)

𝑛 . Their discrete Fourier transforms are 𝐗(𝑚) with elements 𝑋(𝑚)
𝑘 .

• The grid spacing on the frequency axis is 1/ℎ𝑁 , where ℎ is the spacing of the time axis.

• Frequency grid points are labeled by an index 𝑘, such that the 𝑘th frequency is 𝑘/ℎ𝑁 .

• Hats are added if the sequences are stochastic.

8 Chapter 2. Theory

https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Chi-squared_distribution

STACIE, Release 1.0

2.2 STACIE Algorithm Overview
The goal of STACIE is to estimate the integral of the ACF of a physical, continuous, time-
dependent function with an infinite domain. In practice, due to inherently finite computational
resources, however, we resort to discrete and finite time-dependent sequences. We first formulate
STACIE’s goal in the continuous case and then reformulate it in the discrete case.

2.2.1 Continuous time, infinite domain
Consider an observation, �̂�(𝑡), of a time-dependent stochastic process. The integral of the ACF is
defined as:

ℐ = 𝐹
2 ∫

∞

−∞
𝑐(Δ𝑡) dΔ𝑡

with

𝑐(Δ𝑡) = COV[�̂�(𝑡) , �̂�(𝑡 + Δ𝑡)]
Aprefactor 𝐹 is usually present, containing factors such as the temperature and/or the cell volume
in Green–Kubo formalisms [Gre52, Gre54, Kub57]. The integrand is the ACF, 𝑐(Δ𝑡), of the time-
dependent input �̂�(𝑡). It is common to integrate only from 0 to ∞, but we prefer to use the full
range and compensate with the factor 1

2 in front of the integral. (The integrand is an even function
of Δ𝑡.) The expected value is obtained by averaging over all times 𝑡 and all observations �̂�(𝑡).
Let 𝐶(𝑓) be the Fourier transform of the ACF, which is also known as the PSD:

𝐶(𝑓) = ℱ[𝑐](𝑓) = ∫
∞

−∞
𝑐(Δ𝑡)𝑒−𝑖2𝜋𝑓Δ𝑡dΔ𝑡

Then ℐ is simply proportional to the DC component of the PSD, i.e., the zero-frequency limit of
the Fourier transform of the ACF:

ℐ = 𝐹 𝐶(0)
2

At first glance, this result seems trivial, with no added value over the original form of the inte-
gral. For numerical applications, this is actually a useful identity: the sampling ACF is practically
computed using the sampling PSD as an intermediate step. When ℐ is derived from the PSD, the
inverse transform to derive the ACF from the PSD can be skipped. As we will see later, there are
other advantages to using this zero-frequency limit to compute the integral.

Note

Some derivations of Green–Kubo relations of transport properties, conventionally formulated
as integrals of autocorrelation functions, also express them as the zero-frequency limit of an
appropriate spectrum [HM13].

One can always rewrite the autocorrelation integral as a so-called Einstein–Helfand relation
[Hel60], i.e., as the limit of the time derivative of the mean-square displacement [HM13]:

ℐ = 𝐹 1
2 lim

Δ𝑡→∞
d

dΔ𝑡 ⟨| ̂𝑦(𝑡0 + Δ𝑡) − ̂𝑦(𝑡0)|
2
⟩

where ̂𝑦 is the antiderivative of �̂�:

�̂� = d ̂𝑦
d𝑡

2.2. STACIE Algorithm Overview 9

STACIE, Release 1.0

STACIE can also be used to evaluate such limits by using samples of the time derivatives of 𝑦 as
input to the computation of the PSD.

2.2.2 Discretized time, periodic sequences
For simplicity, we first discuss the basic identities in terms of the ensemble average of the discrete
ACF, which has no statistical uncertainties. Further below, we comment on how to deal with the
uncertainties, and refer to the following sections for the details.

In terms of ensemble averages

In analogy with the continuous infinite-time case, the autocorrelation integral can be expressed
in terms of discrete and periodic sequences, �̂�𝑛. For example, such a sequence is obtained by
discretizing the time axis with a time step ℎ and a time origin 𝑡0:

�̂�𝑛 = �̂�(𝑡0 + 𝑛ℎ) ∀ 𝑛 = 0 … 𝑁 − 1

The underlying continuous function �̂�(𝑡), and thus �̂�𝑛, are not necessarily periodic. However,
because we intend to use the discrete Fourier transform and rely on its well-known properties, we
will assume in the derivations that �̂�𝑛 is periodic with period 𝑁 . In practice, this assumption has
negligible effects and is only noticeable at higher frequencies, far away from the zero-frequency
limit of interest.

Due to the discretization in time, the autocorrelation integral must be approximated with a simple
quadrature rule:

ℐ = 𝐹 ℎ1
2

𝑁−1

∑
Δ=0

COV[�̂�𝑛 , �̂�𝑛+Δ]

The summand is the discrete ACF, 𝑐Δ. The covariance is an expected value over all 𝑛 and all
possible realizations of the input sequence.

Let 𝐶𝑘 be the discrete Fourier transform of the autocorrelation function:

𝐶𝑘 =
𝑁−1

∑
Δ=0

𝑐Δ𝜔−𝑘Δ

with 𝜔 = exp(𝑖2𝜋/𝑁). According to (the discrete version of) the Wiener–Khinchin theorem
[OSB99], this Fourier transform can be written in terms of the discrete PSD:

𝐶𝑘 = 1
𝑁 E [|�̂�𝑘|

2
]

with

�̂�𝑘 =
𝑁−1

∑
𝑛=0

(�̂�𝑛 − E[�̂�𝑛])𝜔−𝑘𝑛

In STACIE, we always work with a rescaled version of the PSD, including the factor 𝐹 ℎ/2:

𝐼𝑘 = 𝐹 ℎ
2 𝐶𝑘

In this notation, the autocorrelation integral is simply the zero-frequency limit of the PSD: ℐ = 𝐼0.

10 Chapter 2. Theory

STACIE, Release 1.0

In terms of sampling estimates

So far, we have worked with ensemble averages to define the discrete ACF and PSD. In practice,
however, we must work with sampling estimates of these quantities. To keep the notation simple,
we will assume that E[�̂�𝑛] = 0. Furthermore, we will assume that we can use 𝑀 independent
sequences of length 𝑁 :

�̂�(𝑚)
𝑛 ∀ 𝑛 = 0 … 𝑁 − 1 ∀ 𝑚 = 1 … 𝑀

In this case, the discrete sampling ACF is estimated as:

𝑐Δ ≈ ̂𝑐Δ = 1
𝑁𝑀

𝑀

∑
𝑚=1

𝑁−1

∑
𝑛=0

�̂�(𝑚)
𝑛 �̂�(𝑚)

𝑛+Δ

The discrete sampling PSD, rescaled with STACIE’s conventions, becomes:

𝐼𝑘 ≈ ̂𝐼𝑘 = 𝐹 ℎ
2𝑁

𝑀

∑
𝑚=1

|�̂�
(𝑚)
𝑘 |

2

where 𝑋(𝑚)
𝑘 is the discrete Fourier transform of the 𝑚-th sequence:

�̂�(𝑚)
𝑘 =

𝑁−1

∑
𝑛=0

�̂�(𝑚)
𝑛 𝜔−𝑘𝑛

Plotting the low-frequency part of ̂𝐼𝑘 will already give a quick visual estimate of ℐ with the ap-
propriate units.

A direct computation of ̂𝐼0 for a limited number of input sequences would at best yield a high-
variance estimate of ℐ. (This is only possible if E[�̂�𝑛] = 0, which is not always the case.)

To reduce the variance of the estimate of ℐ, STACIE derives the zero-frequency limit by fitting a
model to the low-frequency part of the power spectrum ̂𝐼𝑘. The following theory sections explain
how this estimate can bemade robustly. In summary, STACIE introduces a fewmodels for the low-
frequency spectrum. The parameters in such a model are estimated with likelihoodmaximization,
and the parameter covariance is estimated with the Laplace approximation [Mac05]. To write out
the likelihood function, the statistical distribution of the sampling PSD amplitudesmust be derived.
Finally, STACIE determines up to which cutoff frequency the model will be fitted. For cutoffs that
are too high, the model becomes too simple to describe all the features in the spectrum, which
leads to significant underfitting. When the cutoff is too low, too few data points are included to
obtain a low-variance estimate of ℐ. This is solved by considering a grid of cutoff frequencies and
assigning weights to each grid point based on the bias-variance trade-off of the regression. The
final parameters are obtained by averaging over the grid of cutoff frequencies.

2.3 Model Spectrum
STACIE supports three models for fitting the low-frequency part of the power spectrum. In both
models, the value at zero frequency corresponds to the autocorrelation integral.

1. The ExpPolyModel is the most general; it is an exponential function of a linear combination
of simple monomials of the frequency. You can specify the degrees of the monomials, and
typically a low degree works fine:

• Degree 0 is suitable for a white noise spectrum.

2.3. Model Spectrum 11

STACIE, Release 1.0

• Degrees {0, 1} can be used to extract useful information from a noisy spectrum.

• Degrees {0, 1, 2} are applicable to spectra with low statistical uncertainty, e.g., averaged
over > 100 inputs.

• An even polynomial with degrees {0, 2} is suitable for spectra that are expected to have
a vanishing derivative at zero frequency.

The main advantage of this model is its broad applicability, as it requires little prior knowl-
edge of the functional form of the spectrum.

2. The PadeModel is useful in several scenarios:

• It can be configured to model a spectrum with a Lorentzian peak at the origin plus some
white noise, which corresponds to an exponentially decaying ACF . In this case, STACIE
also derives the exponential correlation time, which can deviate from the integrated
correlation time.

• Rational functions are, in general, interesting because they can be parameterized to have
well-behaved high-frequency tails, which can facilitate the regression.

3. The LorentzModel is a special case of the Pade model with a Lorentzian peak at the origin
plus some white noise. It is equivalent to the Pade model with numerator degrees {0, 2} and
denominator degrees {2}. This special case is not only implemented for convenience, since
it is the most common way of using the Pade model, but also because it allows STACIE to
derive the exponential correlation time.

2.3.1 1. ExpPoly Model
The ExpPolyModel is defined as:

𝐼exppoly
𝑘 = exp

(∑
𝑠∈𝑆

𝑏𝑠𝑓 𝑠
𝑘)

where 𝑆 is the set of polynomial degrees, which must include 0. With this form, exp(𝑏0) cor-
responds to the integral of the autocorrelation function. When one obtains an estimate ̂𝑏0 and
its variance �̂�2

𝑏0
, the autocorrelation integral is log-normally distributed with estimated mean and

variance:

̂ℐ = exp (̂𝑏0 + 1
2�̂�2

𝑏0)
�̂�2

ℐ = exp (2 ̂𝑏0 + �̂�2
𝑏0) (exp(�̂�2

𝑏0
) − 1)

To construct this model, you can create an instance of the ExpPolyModel class as follows:

from stacie import ExpPolyModel
model = ExpPolyModel([0, 1, 2])

This model is identified as exppoly(0, 1, 2) in STACIE’s screen output and plots.

2.3.2 2. Pade Model
The PadeModel is defined as:

𝐼pade
𝑘 =

∑
𝑠∈𝑆num

𝑝𝑠𝑓 𝑠
𝑘

1 + ∑
𝑠∈𝑆den

𝑞𝑠𝑓 𝑠
𝑘

12 Chapter 2. Theory

https://en.wikipedia.org/wiki/Log-normal_distribution

STACIE, Release 1.0

where 𝑆num contains the polynomial degrees in the numerator, which must include 0, and 𝑆den
contains the polynomial degrees in the denominator, which must exclude 0. With this model, 𝑝0
corresponds to the integral of the autocorrelation function, for which we simply have:

̂ℐ = ̂𝑝0
�̂�2

ℐ = �̂�2
𝑝0

To construct this model, you can create an instance of the PadeModel class as follows:

from stacie import PadeModel
model = PadeModel([0, 2], [2])

This model is identified as pade(0, 2; 2) in STACIE’s screen output and plots.

2.3.3 3. Lorentz Model
The LorentzModel is a special case of the Pade model with numerator degrees {0, 2} and denomi-
nator degrees {2}. For this special case the model is equivalent to:

𝐼 lorentz
𝑘 = 𝐴 + 𝐵

1 + (2𝜋𝑓𝑘𝜏exp)2

where 𝑓𝑘 is the standard frequency grid of the discrete Fourier transform, 𝐴 is the white noise
level, 𝐵 is the amplitude of the Lorentzian peak, and 𝜏exp is the exponential correlation time. The
frequency grid is defined as 𝑓𝑘 = 𝑘/(ℎ𝑁), where ℎ is the time step of the discretized time axis,
and 𝑁 is the number of samples. We can write the Lorentzian model parameters in terms of the
Pade model parameters as follows:

𝐴 = ̂𝑝2
̂𝑞2

𝐵 = ̂𝑝0 − ̂𝑝2
̂𝑞2

𝜏exp = √𝑞2
2𝜋

The Pade model will only correspond to a Lorentzian peak if 𝑞2 > 0 and 𝑝0𝑞2 > 𝑝2. When this is
the case, 𝜏exp is related to the width of the peak (2𝜋𝜏exp) in the power spectrum. The exponential
correlation time and its variance can then be derived from the fitted parameters with first-order
error propagation:

̂𝜏exp = √ ̂𝑞2
2𝜋

�̂�2
𝜏exp = 1

16𝜋2 ̂𝑞2
�̂�2

𝑞2

Note that this model is also applicable to data whose short-time correlations are not exponential,
as long as the tail of the ACF decays exponentially. Such deviating short-time correlations will
only affect the white noise level 𝐴 and features in the PSD at higher frequencies, which will be
ignored by STACIE.

The implementation of the Lorentz model has the following advantages over the equivalent Pade
model:

• The exponential correlation time and its uncertainty are computed.

2.3. Model Spectrum 13

STACIE, Release 1.0

• If no exponential correlation time can be computed, i.e. when 𝑞2 ≤ 0 and 𝑝0𝑞2 ≤ 𝑝2, the fit
is not retained for the final average over all cutoff grid points.

• If the relative error of the exponential correlation time exceeds a certain threshold, which is
set to 10% by default, the fit is not retained for the final average over all cutoff grid points.

The last two points weed out poor fits (typically at too low cutoff frequencies) for which the
maximum a posteriori (MAP) estimate and the Laplace approximation of the posterior distribution
tend to be unreliable.

To construct this model, you can create an instance of the LorentzModel class as follows:

from stacie import LorentzModel
model = LorentzModel()

This model is identified as lorentz(0.1) in STACIE’s screen output and plots, where 0.1 is the
relative error threshold for the exponential correlation time.

2.4 Parameter Estimation
Before discussing how to fit a model to spectral data, we first review the statistics of the sampling
PSD. Given these statistical properties, we can derive the likelihood that certain model parameters
explain the observed PSD.

2.4.1 Statistics of the Sampling Power Spectral Distribution
When constructing an estimate of a discrete PSD from a finite amount of data, it is bound to
contain some uncertainty, which will be characterized below.

The estimate of the PSD is sometimes also called the periodogram or the (empirical) power spec-
trum.

Consider a periodic random real sequence �̂� with elements �̂�𝑛 and period 𝑁 . For practical pur-
poses, it is sufficient to consider one period of this infinitely long sequence. The mean of the
sequence is zero, and its covariance is COV[�̂�𝑛 , �̂�𝑚]. The distribution of the sequence is station-
ary, i.e., each time translation of a sequence results in an equally probable sample. As a result, the
covariance has a circulant structure:

COV[�̂�𝑛 , �̂�𝑚] = 𝑐Δ = 𝑐−Δ

with Δ = 𝑛 − 𝑚. Thus, we can express the covariance with a single index and treat it as a real
periodic sequence, albeit not stochastic. 𝑐Δ is also known as the autocovariance or autocorrelation
function of the stochastic process because it expresses the covariance of a sequence �̂� with itself
translated by Δ steps.

The discrete Fourier transform of the sequence is:

�̂�𝑘 =
𝑁−1

∑
𝑛=0

�̂�𝑛𝜔−𝑘𝑛

with 𝜔 = 𝑒2𝜋𝑖/𝑁 .

A well-known property of circulant matrices is that their eigenvectors are sine- and cosine-like
basis functions. As a result, the covariance of the discrete Fourier transform �̂� becomes diagonal.
To make this derivation self-contained, we write out the mean and covariance of �̂�𝑘 explicitly.
Note that the operators E[⋅], VAR[⋅], and COV[⋅, ⋅] are expected values over all possible realiza-
tions of the sequence.

14 Chapter 2. Theory

https://en.wikipedia.org/wiki/Periodogram

STACIE, Release 1.0

For the expected value of the Fourier transform, we take advantage of the fact that all time trans-
lations of �̂� belong to the same distribution. We can explicitly compute the average over all time
translations, in addition to computing the mean, without loss of generality. In the last steps, the
index 𝑛 is relabeled to 𝑛−𝑚, and some factors are rearranged, after which the sums can be worked
out.

𝐸[�̂�𝑘] = E
⎡⎢⎢⎣

𝑁−1

∑
𝑛=0

�̂�𝑛𝜔−𝑘𝑛⎤⎥⎥⎦

= E
⎡⎢⎢⎣

1
𝑁

𝑁−1

∑
𝑚=0

𝑁−1

∑
𝑛=0

�̂�𝑛+𝑚𝜔−𝑘𝑛⎤⎥⎥⎦

= E

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑁

⎛
⎜
⎜
⎝

𝑁−1

∑
𝑚=0

𝜔𝑘𝑚
⎞
⎟
⎟
⎠⏟⏟⏟⏟⏟⏟⏟

=0

𝑁−1

∑
𝑛=0

�̂�𝑛𝜔−𝑘𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0
The derivation of the covariance uses similar techniques. In the following derivation, ∗ stands for
complex conjugation. Halfway through, the summation index 𝑛 is written as 𝑛 = Δ + 𝑚.

COV[�̂�∗
𝑘 , �̂�ℓ] = COV

⎡⎢⎢⎣

𝑁−1

∑
𝑚=0

�̂�𝑚𝜔𝑘𝑚 ,
𝑁−1

∑
𝑛=0

�̂�𝑛𝜔−ℓ𝑛⎤⎥⎥⎦

=
𝑁−1

∑
𝑚=0

𝑁−1

∑
𝑛=0

𝜔𝑘𝑚−ℓ𝑛𝑐𝑛−𝑚

=
𝑁−1

∑
𝑚=0

𝜔𝑘𝑚−ℓ𝑚
𝑁−1

∑
Δ=0

𝜔−ℓΔ𝑐Δ

= 𝑁𝛿𝑘,ℓ ℱ[𝑐]ℓ

To finalize the result, we need to work out the discrete Fourier transform of the autocorrelation
function, 𝑐Δ. Again, wemake use of the freedom to insert a time average when computing amean.
Note that this derivation assumes E[�̂�𝑛] = 0 to keep the notation bearable.

𝐶𝑘 = ℱ[𝐜]𝑘 =
𝑁−1

∑
Δ=0

𝜔−𝑘Δ E
⎡⎢⎢⎣

1
𝑁

𝑁−1

∑
𝑛=0

�̂�𝑛 �̂�𝑛+Δ
⎤⎥⎥⎦

= 1
𝑁 E

⎡⎢⎢⎣

𝑁−1

∑
𝑛=0

𝜔𝑘𝑛�̂�𝑛

𝑁−1

∑
Δ=0

𝜔−𝑘Δ−𝑘𝑛�̂�𝑛+Δ
⎤⎥⎥⎦

= 1
𝑁 E[|�̂�𝑘|2

]
This is the discrete version of the Wiener–Khinchin theorem [OSB99].

By combining the previous two results, we can write the covariance of the Fourier transform of
the input sequence as:

COV[�̂�∗
𝑘 , �̂�ℓ] = 𝛿𝑘,ℓ E[|�̂�𝑘|2

] = 𝑁𝛿𝑘,ℓ𝐶𝑘

2.4. Parameter Estimation 15

STACIE, Release 1.0

For the real component of �̂�𝑘 (= �̂�∗
−𝑘), we find:

VAR[ℜ(�̂�𝑘)] = 1
4 VAR[�̂�𝑘 + �̂�∗

𝑘]

= 1
4(COV[�̂�𝑘 , �̂�𝑘] + COV[�̂�𝑘 , �̂�∗

𝑘] + COV[�̂�∗
𝑘 , �̂�𝑘] + COV[�̂�∗

𝑘 , �̂�∗
𝑘])

= 1
4(COV[�̂�∗

−𝑘 , �̂�𝑘] + COV[�̂�𝑘 , �̂�∗
𝑘] + COV[�̂�∗

𝑘 , �̂�𝑘] + COV[�̂�∗
𝑘 , �̂�−𝑘])

= {
𝑁𝐶0 if 𝑘 = 0
𝑁
2 𝐶𝑘 if 0 < 𝑘 < 𝑁

Similarly, for the imaginary component (which is zero for 𝑘 = 0):

VAR[ℑ(�̂�𝑘)] = 1
4 VAR[�̂�𝑘 − �̂�∗

𝑘]

= 1
4(COV[�̂�𝑘 , �̂�𝑘] − COV[�̂�𝑘 , �̂�∗

𝑘] − COV[�̂�∗
𝑘 , �̂�𝑘] + COV[�̂�∗

𝑘 , �̂�∗
𝑘])

= {
0 if 𝑘 = 0
𝑁
2 𝐶𝑘 if 0 < 𝑘 < 𝑁

The real and imaginary components have no covariance:

COV[ℜ(�̂�𝑘) , ℑ(�̂�𝑘)] = 1
4 COV[�̂�𝑘 + �̂�∗

𝑘 , �̂�𝑘 − �̂�∗
𝑘]

= 1
4(COV[�̂�𝑘 , �̂�𝑘] − COV[�̂�𝑘 , �̂�∗

𝑘]

+ COV[�̂�∗
𝑘 , �̂�𝑘] − COV[�̂�∗

𝑘 , �̂�∗
𝑘])

= 0

In summary, the Fourier transform of a stationary stochastic process consists of uncorrelated real
and imaginary components at each frequency. Furthermore, the variance of the Fourier transform
is proportional to the power spectrum. This simple statistical structure makes the spectrum a
convenient starting point for further analysis and uncertainty quantification. In comparison, the
ACF has non-trivial correlated uncertainties [Bar80, Bos96, FZ09], making it difficult to fit models
directly to the ACF (or its running integral).

If we further assume that the sequence �̂� is the result of a periodic Gaussian process, the Fourier
transform is normally distributed. In this case, the empirical power spectrum follows a scaled
Chi-squared distribution [EMB17, Ful95, Pri82, SS17]. For notational consistency, we will use the
Gamma(𝛼, 𝜃) distribution with shape parameter 𝛼 and scale parameter 𝜃:

̂𝐶0 = 1
𝑁 |�̂�0|2 ∼ Gamma(1

2 , 2𝐶0)

̂𝐶𝑁/2 = 1
𝑁 |�̂�𝑁/2|2 ∼ Gamma(1

2 , 2𝐶𝑁/2) if 𝑁 is even

̂𝐶𝑘 = 1
𝑁 |�̂�𝑘|2 ∼ Gamma(1, 𝐶𝑘) for 0 < 𝑘 < 𝑁 and 𝑘 ≠ 𝑁/2

Note that �̂�0 and �̂�𝑁/2 have only a real component because the input sequence �̂� is real, which
corresponds to a Chi-squared distribution with one degree of freedom. For all other frequencies,
�̂�𝑘 has a real and imaginary component, resulting in two degrees of freedom.

16 Chapter 2. Theory

https://en.wikipedia.org/wiki/Gamma_distribution

STACIE, Release 1.0

Spectra are often computed by averaging them over 𝑀 sequences to reduce the variance. In this
case, the 𝑀-averaged empirical spectrum is distributed as:

̂𝐶𝑘 = 1
𝑁𝑀

𝑀

∑
𝑠=1

|�̂�𝑠
0|2 ∼ Gamma(𝜈𝑘

2 , 2
𝜈𝑘

𝐶𝑘)

with

𝜈𝑘 =
⎧⎪
⎨
⎪⎩

𝑀 if 𝑘 = 0
𝑀 if 𝑘 = 𝑁/2 and 𝑁 is even
2𝑀 otherwise

The rescaled spectrum used in STACIE, ̂𝐼𝑘, has the same distribution, except for the scale param-
eter:

̂𝐼𝑘 = 𝐹 ℎ
2

̂𝐶𝑘 ∼ Gamma(𝜈𝑘
2 , 2

𝜈𝑘
𝐼𝑘)

2.4.2 Regression
To identify the low-frequency part of the spectrum, we introduce a smooth switching function
that goes from 1 to 0 as the frequency increases:

𝑤(𝑓𝑘|𝑓cut) = 1
1 + (𝑓𝑘/𝑓cut)𝛽

This switching function is 1/2 when 𝑓𝑘 = 𝑓cut. The hyperparameter 𝛽 controls the steepness of
the transition and is 8 by default. (This should be fine for most applications.) This value can be
set with the switch_exponent argument of the estimate_acint() function. One can better appreciate
the advantage of this switching function by rewriting with a hyperbolic tangent:

𝑤(𝑓𝑘|𝑓cut) = 1
2 [1 − tanh (

𝛽
2 ln 𝑓𝑘

𝑓cut)]
This shows that the switching is scale invariant, i.e., it does not depend on the unit of the fre-
quency, because the frequency appears only in a logarithm. The parameter 𝛽 controls the width
of the transition region on a logarithmic scale.

We derive belowhow to fit parameters for a given frequency cut-off 𝑓cut. The next section describes
how to find suitable cutoffs.

To fit the model, we use a form of local regression by introducing weights into the log-likelihood
function. The weighted log likelihood of the model 𝐼model

𝑘 (𝐛) with parameter vector 𝐛 becomes:

ln ℒ(𝐛) = ∑
𝑘∈𝐾

𝑤(𝑓𝑘|𝑓cut) ln 𝑝Gamma(𝛼𝑘,𝜃𝑘)(̂𝐶𝑘)

= ∑
𝑘∈𝐾

𝑤(𝑓𝑘|𝑓cut) [
− ln Γ(𝛼𝑘) − ln(𝜃𝑘(𝐛)) + (𝛼𝑘 − 1) ln

(
̂𝐶𝑘

𝜃𝑘(𝐛))
−

̂𝐶𝑘
𝜃𝑘(𝐛)]

with

𝛼𝑘 = 𝜈𝑘
2

𝜃𝑘(𝐛) =
2𝐼model

𝑘 (𝐛)
𝜈𝑘

2.4. Parameter Estimation 17

STACIE, Release 1.0

This log-likelihood is maximized to estimate the model parameters. The zero-frequency limit of
the fitted model is then the estimate of the autocorrelation integral.

Note

It is worthmentioning that the cutoff frequency is not a proper hyperparameter in the Bayesian
sense. It appears in the weight factor 𝑤(𝑓𝑘|𝑓cut), which is not part of the model. Instead, it is
a concept taken from local regression methods. One conceptual limitation of this approach is
that the unit of the likelihood function, ℒ(𝐛), depends on the cutoff frequency. As a result, one
cannot compare the likelihood of two different cutoffs. This is of little concern when fitting
parameters for a fixed cutoff, but it is important to keep in mind when searching for suitable
cutoffs.

For compatibility with the SciPy optimizers, the cost function cost(𝐛) = − ln ℒ(𝐛) is minimized.
STACIE implements first and second derivatives of cost(𝐛), and also a good initial guess of the
parameters, using efficient vectorized NumPy code. These features make the optimization of the
parameters both efficient and reliable. The optimized parameters are denoted as �̂�. The hats indi-
cate that these are statistical estimates because they are derived from data statistical uncertainties.

The Hessian computed with the estimated parameters, cost(�̂�), must be positive definite. (If non-
positive eigenvalues are found, the optimization is treated as failed.)

�̂� > 0 with �̂�𝑖𝑗 = 𝜕2 cost
𝜕𝑏𝑖𝜕𝑏𝑗 |𝐛=�̂�

The estimated covariance matrix of the estimated parameters is approximated by the inverse of
the Hessian, which can be justified with the Laplace approximation: [Mac05].

̂𝐶 ̂𝑏𝑖,�̂�𝑗
= (�̂�−1)𝑖𝑗

This covariance matrix characterizes the uncertainties of the model parameters and thus also of
the autocorrelation integral. More accurate covariance estimates can be obtained with Monte
Carlo sampling, but this is not implemented in STACIE. Note that this covariance only accounts
for the uncertainty due to noise in the spectrum, which is acceptable if the cutoff frequency is a
fixed value. However, in STACIE, the cutoff frequency is also fitted, meaning that the uncertainty
due to the cutoff must also be accounted for. This will be discussed in the next section.

Note

The estimated covariance has no factor 𝑁fit/(𝑁fit − 𝑁par), where 𝑁fit is the amount of data in
the fit and 𝑁par is the number of parameters. This factor is specific to the case of (non)linear
regression with normal deviates of which the standard deviation is not known a priori [Mil11].
Here, the amplitudes are Gamma-distributed with a known shape parameter. Only the scale
parameter at each frequency is predicted by the model.

2.4.3 Regression Cost Z-score
When amodel is too simple to explain the data, the regression cost Z-score can be used to quantify
the goodness of fit. This is implemented in STACIE to facilitate the detection of poorly fitted
models, which can sometimes occur if the selected model cannot explain the data for any cutoff
frequency. This Z-score is defined as:

𝑍cost(𝐛) =
cost(𝐛) − E [̂cost(𝐛)]

STD [̂cost(𝐛)]

18 Chapter 2. Theory

https://en.wikipedia.org/wiki/Standard_score

STACIE, Release 1.0

The mean E [̂cost(𝐛)] and standard deviation STD [̂cost(𝐛)] are computed as expectation values
over all possible spectra sampled from the Gamma distribution corresponding to themodel param-
eters 𝐛. For both expectation values STACIE implements computationally efficient closed-form
solutions.

The Z-score is easily interpretable as a goodness of fit measure. When the model fits the data
well, the Z-score has a zero mean and unit standard deviation. When the model is too simple and
underfits the data, the Z-score is positive and quickly exceeds the standard deviation. For example
a Z-score of 2 indicates that the model cost is two standard deviations above its mean, suggesting
that the model is too simple.

The mean is derived as follows:

E [̂cost(𝐛)] = ∑
𝑘∈𝐾

𝑤(𝑓𝑘|𝑓cut) E [− ln 𝑝Gamma(𝛼𝑘,𝜃𝑘)(̂𝐶𝑘)]

where the mean is computed by sampling ̂𝐶𝑘 from the distribution Gamma(𝛼𝑘, 𝜃𝑘). This mean is
also known as the entropy of the distribution, with a well-known closed-form solution. Inserting
this solution into the previous equation gives:

E [̂cost(𝐛)] = ∑
𝑘∈𝐾

𝑤(𝑓𝑘|𝑓cut)(𝛼𝑘 − ln(𝜃𝑘(𝐛)) + ln Γ(𝛼𝑘) + (1 − 𝛼𝑘)𝜓(𝛼𝑘))

where 𝜓(𝛼) is the digamma function.

The standard deviation is best derived by first computing the variance of the cost function:

VAR [̂cost(𝐛)] = ∑
𝑘∈𝐾

𝑤(𝑓𝑘|𝑓cut)2 VAR [− ln 𝑝Gamma(𝛼𝑘,𝜃𝑘)(̂𝐶𝑘)]

The variance of the cost function is also defined as an expectation value over ̂𝐶𝑘 from the dis-
tribution Gamma(𝛼𝑘, 𝜃𝑘). This variance can also be derived analytically, but the result is not as
well-known, so we will work it out here. The logarithm of the probability density has only two
terms that depend on the random variable ̂𝐶𝑘, which are relevant for the variance:

VAR [− ln 𝑝Gamma(𝛼𝑘,𝜃𝑘)(̂𝐶𝑘)]

= VAR
[

(𝛼𝑘 − 1) ln(̂𝐶𝑘) −
̂𝐶𝑘

𝜃𝑘(𝐛)]

= (𝛼𝑘 − 1)2 VAR [ln(̂𝐶𝑘)] + 1
𝜃2

𝑘(𝐛)
VAR [̂𝐶𝑘] − 2𝛼𝑘 − 1

𝜃𝑘(𝐛) COV [ln(̂𝐶𝑘), ̂𝐶𝑘]

The first two terms are well-known results, i.e. the variance of the log-Gamma and Gamma dis-
tributions, respectively.

VAR [ln(̂𝐶𝑘)] = 𝜓1(𝛼𝑘)
VAR [̂𝐶𝑘] = 𝛼𝑘 𝜃2

𝑘(𝐛)

where 𝜓1(𝛼) is the trigamma function. The only term that requires some more work is the third
term:

COV [ln(̂𝐶𝑘), ̂𝐶𝑘] = E [ln(̂𝐶𝑘) ̂𝐶𝑘] − E [ln(̂𝐶𝑘)] E [̂𝐶𝑘]

2.4. Parameter Estimation 19

https://en.wikipedia.org/wiki/Digamma_function
https://en.wikipedia.org/wiki/Gamma_distribution#Properties
https://en.wikipedia.org/wiki/Gamma_distribution#Properties
https://en.wikipedia.org/wiki/Trigamma_function

STACIE, Release 1.0

A derivation of the first term can be found in the wonderful online book of statistical proofs. The
second term contains well-known expectation values of the Gamma distribution. The results are:

E [ln(̂𝐶𝑘) ̂𝐶𝑘] = 𝛼𝑘 𝜃𝑘(𝐛)(𝜓(𝛼𝑘 + 1) + ln(𝜃𝑘(𝐛)))
E [ln(̂𝐶𝑘)] = 𝜓(𝛼𝑘) + ln(𝜃𝑘(𝐛))

E [̂𝐶𝑘] = 𝛼𝑘 𝜃𝑘(𝐛)

The covariance can now be worked out by making using of the well-known recurrence relation
of the digamma function:

COV [ln(̂𝐶𝑘), ̂𝐶𝑘] = 𝛼𝑘 𝜃𝑘(𝐛)(𝜓(𝛼𝑘 + 1) − 𝜓(𝛼𝑘))
= 𝜃𝑘(𝐛)

Putting it all together, we find the variance of the logarithm of the probability density of the
Gamma distribution:

VAR [− ln 𝑝Gamma(𝛼𝑘,𝜃𝑘)(̂𝐶𝑘)] = (𝛼𝑘 − 1)2𝜓1(𝛼𝑘) − 𝛼𝑘 + 2

The standard devation in the Z-score finally becomes:

STD [̂cost(𝐛)] =
√ ∑

𝑘∈𝐾
𝑤(𝑓𝑘|𝑓cut)2((𝛼𝑘 − 1)2𝜓1(𝛼𝑘) − 𝛼𝑘 + 2)

It is noteworthy that the standard deviation is independent of the model parameters 𝐛.

2.5 Frequency Cutoff
In STACIE, a model is fitted to the low-frequency part of the sampling PSD. This low-frequency
part is defined by a cutoff frequency, 𝑓cut, above which the model is not expected to explain
the data. The previous section discussed how to implement a local regression using a smooth
switching function parameterized by such a cutoff frequency, 𝑓cut. A good choice for the cutoff
seeks a trade-off between two conflicting goals:

1. If too much data is included in the fit, the model may be too simple to explain all features of
the spectrum. It underfits the data, and the estimates are generally biased.

2. If too little data is included in the fit, the variance of the estimated parameters is larger than
necessary, meaning that not all relevant information is used.

Finding a good compromise between these two can be done in several ways, and similar difficulties
arise in other approaches to compute transport coefficients. For example, in the direct quadrature
of the ACF , the truncation of the integral faces a similar trade-off.

Because themodel is fitted to a sampling PSDwith known and convenient statistical properties, as
discussed in the previous section, it is possible to determine the cutoff frequency systematically. As
also explained in the previous section, the cutoff frequency is not a proper hyperparameter in the
Bayesian sense, meaning that a straightforward marginalization over the cutoff frequency is not
possible [RW05]. Instead, STACIE uses cross-validation to find a good compromise between bias
and variance. As explained below, a model likelihood is constructed based on cross-validation,
whose unit is independent of the cutoff frequency. This model is then used to marginalize esti-
mated parameters over the cutoff frequency.

20 Chapter 2. Theory

https://statproofbook.github.io/P/gam-xlogx
https://statproofbook.github.io/
https://en.wikipedia.org/wiki/Gamma_distribution#Properties
https://en.wikipedia.org/wiki/Digamma_function#Recurrence_formula_and_characterization
https://en.wikipedia.org/wiki/Digamma_function#Recurrence_formula_and_characterization

STACIE, Release 1.0

2.5.1 Effective number of fitting points
The concept of “effective number of fitting points” is used regularly in the following subsections.
For a given cutoff frequency, it is defined as:

𝑁eff(𝑓cut) =
𝑀

∑
𝑘=1

𝑤(𝑓𝑘|𝑓cut)

This is simply the sum of the weights introduced in the section on regression.

2.5.2 Grid of Cutoff Frequencies
STACIE uses a logarithmic grid of cutoff frequencies and fits model parameters for each cutoff.
The grid is defined as:

𝑓cut,𝑗 = 𝑓cut,0 𝑟𝑗

where 𝑓cut,0 is the lowest cutoff frequency in the grid, and 𝑟 is the ratio between two consecutive
cutoff frequencies. The following parameters define the grid:

• The lowest cutoff is determined by solving:

𝑁eff(𝑓cut,min) = 𝑁eff, min

where 𝑁eff, min is a user-defined parameter, and 𝑃 is the number of model parameters. In
STACIE, the default value is 𝑁eff, min = 5𝑃 , which reduces the risk of numerical issues in the
regression. The value of 𝑁eff, min can be adjusted using the neff_min option in the function
estimate_acint().

• The maximum cutoff frequency is determined by solving:

𝑁eff(𝑓cut,max) = 𝑁eff, max

where 𝑁eff, min is a user-defined parameter. In STACIE, the default value is 𝑁eff, min = 1000.
This value can be modified using the neff_max option in the function estimate_acint(). The
purpose of this parameter is to limit the computational cost of the regression. (For short
inputs, the highest cutoff frequency is also constrained by the Nyquist frequency.)

• The ratio between two consecutive cutoff frequencies is:

𝑟 = exp(𝑔sp/𝛽)

where 𝑔sp is a user-defined parameter, and 𝛽 controls the steepness of the switching function
𝑤(𝑓|𝑓cut). In STACIE, the default value is 𝑔sp = 0.5. This value can be adjusted using the
fcut_spacing option in the function estimate_acint(). By incorporating the parameter 𝛽 into
the definition of 𝑟, a steeper switching function automatically requires a finer grid of cutoff
frequencies.

Parameters are fitted for all cutoffs, starting from the lowest one. As shown below, the scan of the
cutoff frequencies can be stopped before reaching 𝑓cut,max.

2.5.3 Cross-Validation

Given a cutoff frequency, 𝑓cut,𝑗 , STACIE estimates model parameters �̂�(𝑗) and their covariance
matrix �̂�𝐛(𝑗),𝐛(𝑗) . To quantify the degree of over- or underfitting, the model parameters are further
refined by fitting them to the first and second halves of the low-frequency part of the sampling

2.5. Frequency Cutoff 21

STACIE, Release 1.0

PSD. To make these refinements robust, the two halves are defined using smooth switching func-
tions:

𝑤left(𝑓 |𝑓cut,𝑗) = 𝑤(𝑓|𝑔cv𝑓cut,𝑗 /2)
𝑤right(𝑓 |𝑓cut,𝑗) = 𝑤(𝑓|𝑔cv𝑓cut,𝑗) − 𝑤left(𝑓 |𝑓cut,𝑗)

The parameter 𝑔cv is a user-defined parameter that controls the amount of data used in the refine-
ments. In STACIE, the default value is 𝑔cv = 1.25, meaning that 25% more data is used compared
to the original fit. (This makes the cross-validation more sensitive to underfitting, which has been
found beneficial in practice.) This parameter can be controlled using the fcut_factor option in the
CV2LCriterion class. An instance of this class can be passed to the cutoff_criterion argument of
the function estimate_acint().

Instead of performing two full non-linear regressions of the parameters for the two halves, linear
regression is used to make first-order approximations of the changes in parameters. For cutoffs
leading to well-behaved fits, these corrections are small, justifying the use of a linear approxima-
tion.

The design matrix of the linear regression is:

𝐷𝑘𝑝 = 𝜕𝐼model(𝑓𝑘; 𝐛)
𝜕𝑏𝑝 |𝐛=�̂�(𝑗)

The expected values are the residuals between the sampling PSD and the model:

𝑦𝑘 = ̂𝐼𝑘 − 𝐼model(𝑓𝑘; �̂�(𝑗))
The measurement error is the standard deviation of the Gamma distribution, using the model
spectrum in the scale parameter and the shape parameter of the sampling PSD:

𝜎𝑘 = 𝐼model(𝑓𝑘; �̂�(𝑗))
√𝛼𝑘

The weighted regression to obtain first-order corrections to the parameters �̂�(𝑗) solves the follow-
ing linear system in the least-squares sense:

𝑤𝑘
𝜎𝑘

𝑃

∑
𝑝=1

𝐷𝑘𝑝 ̂𝑏(𝑗)
corr,𝑝 = 𝑤𝑘

𝜎𝑘
𝑦𝑘

where 𝑤𝑘 is the weight of the 𝑘-th frequency point. This system is solved once with weights for
the left half and once for the right half.

The function linear_weighted_regression() provides a robust pre-conditioned implementation of
the above linear regression. It can handle multiple weight vectors simultaneously and can directly
compute linear combinations of parameters for different weight vectors. It is used to directly
compute the difference between the corrections for the left and right halves, denoted as ̂𝐝, and its
covariance matrix �̂�𝐝,𝐝. Normally, the model parameters fitted to both halves must be the same,
and the negative log-likelihood of the fitted parameters being identical is given by:

criterionCV2L = − ln ℒCV2L
(̂𝐝(𝑗), �̂�(𝑗)

𝐝) = 𝑃
2 ln(2𝜋) + 1

2 ln |�̂�
(𝑗)
𝐝 |⏟⏟⏟⏟⏟

variance

+ 1
2(̂𝐝(𝑗))

𝑇
(�̂�(𝑗)

𝐝)
−1 ̂𝐝(𝑗)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
bias

When starting from the lowest cutoff grid point, the second term of the criterion (the variance
term) will be high because the parameters are poorly constrained by the small amount of data used

22 Chapter 2. Theory

STACIE, Release 1.0

in the fit. As the cutoff frequency and the effective number of fitting points increase, the model
becomes better constrained. The second termwill decrease, but as soon as the model underfits the
data, the third term (the bias term) will steeply increase. Practically, the cutoff scan is interrupted
when the criterion exceeds the incumbent by 𝑔incr. The default value is 𝑔incr = 100, but this can
be changed using the criterion_high option in the function estimate_acint().

A good cutoff frequency is the one that minimizes the criterion, thereby finding a good compro-
mise between bias and variance.

Note

In the description above, we assume that a cutoff exists for which the model can explain the
spectrum. With unfortunate model choices, this may not be the case. The cutoff scan will
then try to find a compromise between the bias and variance, but this will not be useful if the
model can not be describe the spectrum at all. This situation can be detected by checking the
Regression Cost Z-score, derived in the previous section.

2.5.4 Marginalization Over the Cutoff Frequency
Any method to deduce the cutoff frequency from the spectrum, whether it is human judgment
or an automated algorithm, introduces some uncertainty in the final result because the cutoff is
based on a sampling PSD spectrum with statistical uncertainty.

In STACIE, this uncertainty is accounted for by marginalizing the model parameters over the
cutoff frequency, using ℒCV2L as a model for the likelihood. This approach naturally incorporates
the uncertainty in the cutoff frequency and is preferred over fixing the cutoff frequency at a single
value.

Practically, the final estimate of the parameters and their covariance is computed using standard
expressions for mixture distributions:

�̂� =
𝐽

∑
𝑗=1

𝑊𝑗 �̂�(𝑗)

̂𝐶𝐛,𝐛 =
𝐽

∑
𝑗=1

𝑊𝑗 (̂𝐶𝐛(𝑗),𝐛(𝑗) + (�̂� − �̂�(𝑗))2)

Here, �̂�(𝑗) and ̂𝐶𝐛(𝑗),𝐛(𝑗) represent the parameters and their covariance, respectively, for cutoff 𝑗.
The weights 𝑊𝑗 sum to 1 and are proportional to ℒCV2L.

Note that STACIE also computes weighted averages of other quantities in the sameway, including:

• The effective number of fitting points, 𝑁eff

• The cutoff frequency, 𝑓cut

• The switching function, 𝑤(𝑓|𝑓cut)
• The regression cost Z-score, 𝑍cost

• The cutoff criterion Z-score, 𝑍criterion (defined below)

2.5. Frequency Cutoff 23

https://en.wikipedia.org/wiki/Mixture_distribution#Moments
https://en.wikipedia.org/wiki/Mixture_distribution#Moments

STACIE, Release 1.0

2.5.5 Cutoff Criterion Z-score
In the far majority of cases, the cutoff criterion will be dominated by the bias term: it typically
increases steeply as soon as the model underfits the data. In contrast, the variance term decreases
relatively slowly. As a result, the minimum of the cutoff criterion is well-defined at the onset
of underfitting. This works particularly well when the spectrum can be computed with a high
frequency resolution. Unfortunately, there are cases where this ideal pattern does not hold, usu-
ally when providing too little data to STACIE, in which the cutoff criterion exhibits statistical
fluctuations. To detect such ill-constrained cases, STACIE computes a Z-score for the cutoff cri-
terion. This Z-score is defined as in the same spirit as the Regression Cost Z-score, but now using
criterionCV2L instead of the regression cost function.

The cutoff criterion Z-score is defined as:

𝑍criterion =
criterionCV2L − E [̂criterionCV2L

]

STD [̂criterionCV2L
]

Themean and standard deviation are computed by averaging over all vectors 𝐝 from the likelihood
ℒCV2L.

For cutoff frequencies that minimize the criterion, the Z-score should be close to zero, because
the difference between two parameters fitted to the left and right halves of the spectrum should
be zero within the statistical uncertainty. When the bias term in the cutoff criterion is noisy,
it may feature minima dominated by the variance term, which are not useful and may produce
unreliable estimates (with misleading error bars). In such cases, the cutoff criterion Z-score will
be significantly larger than zero.

The mean in the Z-score can be worked out easily because it corresponds to the entropy of a
multivariate normal distribution:

E [̂criterionCV2L
] = E𝐝 [− ln ℒCV2L (̂𝐝, �̂�𝐝,𝐝)] = 𝑃

2 ln(2𝜋𝑒) + 1
2 ln |�̂�𝐝,𝐝|

For the standard deviation, we first work out the variance of the cutoff criterion:

VAR [̂criterionCV2L
] = VAR𝐝 [− ln ℒCV2L (̂𝐝, �̂�𝐝,𝐝)]

Only the bias term contributes to the variance of the cutoff criterion. This term can be rewritten
as one half the sum of 𝑃 squared standard normal distributed variables. By making use of the
properties of the chi-squared distribution, we can work out the variance of the bias term and take
the square root to obtain the standard deviation:

STD [̂criterionCV2L
] = √

𝑃
2

24 Chapter 2. Theory

CHAPTER 3

Preparing Inputs

This section explains how to prepare input sequences for STACIE to ensure high-quality results.
It consists of three parts:

• Guidelines for planning and preparing sufficient input sequences for STACIE.

• Instructions for efficiently storing sequences on disk using block averages.
• Recommendations for performing molecular dynamics simulations that generate suitable in-
puts for STACIE.

3.1 How to Prepare Sufficient Inputs for STACIE?
This section explains how to achieve a desired relative error 𝜖rel of the autocorrelation integral
estimate, ̂ℐ. The preparation of sufficient inputs consists of two steps:

1. First, we guesstimate the number of independent sequences, 𝑀 , required to achieve the
desired relative error.

2. Second, a test is proposed to verify that the number of steps in the input sequencess, 𝑁 , is
sufficient to achieve the desired relative error. Because this second step requires information
that is not available a priori, it involves an analysis with STACIE of a preliminary set of input
sequences. This will reveal whether the number of steps in the input sequences is sufficient.
If not, the inputs must be extended, e.g., by running additional simulations or measurements.

3.1.1 Step 1: Guesstimate the Number of Independent Sequences
Because the amplitudes of the (rescaled) sampling PSD are Gamma-distributed, one can show that
the relative error of the PSD (mean divided by the standard deviation) is given by:

STD[̂𝐼𝑘]
E[̂𝐼𝑘]

=
√

2
𝜈𝑘

where 𝜈𝑘 is the number of degrees of freedom of the sampling PSD at frequency 𝑘. For most
frequencies, we have 𝜈𝑘 = 2𝑀 . (See Parameter Estimation for details.) Because we are only

25

STACIE, Release 1.0

interested in an coarse estimate of the required number of independent sequences, we will use
𝜈𝑘 = 2𝑀 for all frequencies.

Let us assume for simplicity that wewant to fit awhite noise spectrum, which can bemodeledwith
a single parameter, namely the amplitude of the spectrum. In this case, this single parameter is
also the autocorrelation integral. By taking the average of the PSD over the first 𝑁eff frequencies,
the relative error of the autocorrelation integral is approximately given by:

𝜖rel = 1
√𝑀𝑁eff

In general, for any model, we recommend fitting to at least 𝑁eff = 20 𝑃 points. Substituting this
good practice into the equation above, we find the following estimate of the number of indepen-
dent sequences 𝑀 :

𝑀 ≈ 1
20 𝑃 𝜖2

rel

Given the simplicity and the drastic assumptions made, this is only a guideline and should not be
seen as a strict rule.

From our practical experience, 𝑀 = 10 is a low number and 𝑀 = 500 is quite high. For 𝑀 < 10,
the results are often rather poor and possibly a bit confusing. In this low-data regime, the sampling
PSD is extremely noisy. While we have validated STACIE in this low-data regime with the ACID
test set, the visualization of the spectrum will not be very informative for low 𝑀 .

A single molecular dynamics simulation often provides more than one independent sequence.
The following table lists 𝑀 (for a single simulation) for the transport properties discussed in the
Properties section.

Transport Property 𝑀
Bulk Viscosity 1
Thermal Conductivity 3
Ionic Electrical Conductivity 3
Shear Viscosity 5
Diffusivity 3𝑁atom

This means that in most cases (except for diffusivity), multiple independent simulations are re-
quired to achieve a good estimate of the transport property. While diffusivity may seem to be
a very forgiving case, it is important to note that displacements of particles in a liquid are of-
ten highly correlated. STACIE assumes its inputs to be independent, which is not the case for
particle velocities when studying self-diffusivity in a liquid. A correct treatment of uncertainty
quantification in this case is a topic of ongoing research.

3.1.2 Step 2: Test the Sufficiency of the Number of Steps and Increase if
Necessary

There is no simple way to know a priori the required number of steps in the input sequences.
Hence, we recommend first generating inputs with about 400 𝑃 steps, where 𝑃 is the number
of model parameters, and analyzing these inputs with STACIE. With this choice, the first 20𝑃
points that are ideally used for fitting will be a factor 10 below the Nyquist frequency, which is
a minimal first attempt to identify the low-frequency part of the spectrum. Using these data as
inputs, you will obtain a first estimate of the autocorrelation integral and its relative error. If the
relative error is larger than the desired value, you can extend the input sequences with additional
steps and repeat the analysis.

26 Chapter 3. Preparing Inputs

STACIE, Release 1.0

Note that for some applications, 400 𝑃 steps may be far too short, meaning that you will need to
extend your inputs a few times before you get a clear picture of the relative error. It is not uncom-
mon to run into problems with storage quota in this scenario. To reduce the storage requirements,
block averages can be helpful.

In addition to the relative error, there are other indicators to monitor the quality of the results.
If any of the following criteria are not met, we recommend extending the input sequences with
additional steps and repeating the analysis with STACIE:

• The effective number of points used in the fit, which is determined by the cutoff frequency,
should be larger than 20 times the number of model parameters.

• The Z-score computed for the regression cost and the cutoff criterion should be smaller than
2. Note that the Z-scores may also be large for other reasons than insufficient data. This
may also occur when the functional form of the model can never match the data, e.g. fitting
a white noise model to a spectrum that has a non-zero slope.

• When using the Pade model, the total simulation time should be sufficient to resolve the
zero-frequency peak of the spectrum. The width of the peak can be derived from the Pade
model and is 1/2𝜋𝜏exp, where 𝜏exp is the exponential correlation time. Because the resolution
of the frequency axis of the power spectrum is 1/𝑇 , where 𝑇 is the total simulation time,
ample frequency grid points in this first peak are guaranteed when:

𝑇 ≫ 2𝜋𝜏exp
For example, 𝑇 ≈ 20𝜋𝜏exp will provide a decent resolution. When using a discrete time step
ℎ, the corresponding number of steps is:

𝑁 ≈ 20𝜋𝜏exp/ℎ

When STACIE estimates a large exponential correlation time, e.g. 𝜏exp > 𝑇 /(20𝜋), it has
derived this value from a very sharp spectral peak at zero frequency. In this case, the peak
width is artificially broadened due to spectral leakage, which results in an underestimation
of the correlation time. Hence, the true exponential correlation time is then even larger than
the estimated value.

Finally, it is recommended that you use sequences whose length is a power of two, or at least a
product of small prime numbers. NumPy’s FFT algorithm used in STACIE is optimized for such
sequences and becomes significantly slower for sequence lengths with large prime factors. A good
strategy for adhering to this recommendation is to start with a sequence length equal to the first
power of two greater than 400𝑃 , where 𝑃 is the number of model parameters. Then repeatedly
double the sequence length until the analysis with STACIE indicates that the number of steps is
sufficient. This approach also facilitates increasing the block size by factors of 2 a posteriori, when
working with block averages to reduce storage requirements.

3.2 Reducing Storage Requirements with Block Averages
When computer simulations generate time-dependent data, they often use a discretization of the
time axis with a resolution (much) higher than needed for computing the autocorrelation integral
with STACIE. Storing (and processing) all these data may require excessive resources. To reduce
the amount of data, we recommend taking block averages. These block averages form a new time
series with a time step equal to the block size multiplied by the original time step. They reduce
storage requirements by a factor equal to the block size. If the program generating the sequences
does not support block averages, you can use stacie.utils.block_average().

If the blocks are sufficiently small compared to the decay rate of the autocorrelation function,
STACIE will produce virtually the same results. The effect of block averages can be understood
by inserting them into the discrete power spectrum, using STACIE’s normalization convention to

3.2. Reducing Storage Requirements with Block Averages 27

https://en.wikipedia.org/wiki/Spectral_leakage

STACIE, Release 1.0

obtain the proper zero-frequency limit. Let ̂𝑎ℓ be the ℓ’th block average of 𝐿 blocks with block
size 𝐵. We can start from the power spectrum of the original sequence, �̂�𝑛, and then introduce
approximations to rewrite it in terms of the block averages:

̂𝐼𝑘 = 𝐹 ℎ1
2

𝑁−1

∑
Δ=0

̂𝑐Δ𝜔−𝑘Δ
𝑁

= 𝐹 ℎ
𝑁

1
2

|
|
||

𝑁−1

∑
𝑛=0

�̂�𝑛𝜔−𝑘𝑛
𝑁

|
|
||

2

≈ 𝐹 ℎ
𝑁

1
2

|
|
||

𝑁−1

∑
𝑛=0

̂𝑎⌊𝑛/𝐵⌋𝜔−𝑘𝑛
𝑁

|
|
||

2

≈ 𝐹 ℎ
𝐿

1
2

|
|
||

𝐿−1

∑
ℓ=0

𝐵 ̂𝑎ℓ𝜔−𝑘ℓ𝐵
𝑁

|
|
||

2

= 𝐹 ℎ𝐵
𝐿

1
2

|
|
||

𝐿−1

∑
ℓ=0

̂𝑎ℓ𝜔−𝑘ℓ
𝐿

|
|
||

2

with

𝜔𝑁 = exp(𝑖2𝜋/𝑁) 𝜔𝐿 = exp(𝑖2𝜋/𝐿) = 𝜔𝐵
𝑁

The final result is the power spectrum of the block averages, where ℎ𝐵 is the new time step and
𝐿 is the sequence length.

The approximations assume that 𝜔𝑘𝑛
𝑁 is nearly the same ∀ 𝑛 ∈ [0, 𝐵]. Put differently, the approx-

imation is small when

𝜔𝑘𝐵
𝑁 ≈ 1 or 𝑘𝐵

𝑁 ≪ 1

The larger the block size 𝐵, the smaller the range of frequencies for which ̂𝐼𝑘 is well approximated.

Depending on the model fitted to the spectrum, there are two ways to determine the appropriate
block size.

1. For anymodel, the number of points fitted to the spectrum is recommended to be about 20 𝑃 ,
where 𝑃 is the number of parameters in the model. This means that the block size 𝐵 should
be chosen such that

𝐵 ≪ 𝑁
20 𝑃

E.g., 𝐵 = 𝑁
400𝑃 is a good choice. This practically means that there should be at least 400 𝑃

blocks. Fewer blocks will inevitably lead to significant aliasing effects.

2. When using the Pade model, one should ensure that the spectrum amplitudes ̂𝐼𝑘 in the peak
at zero frequency are not distorted by the block averages. The width of this peak in the
Pade model is 1/2𝜋𝜏exp, and the resolution of the frequency axis of the power spectrum is
1/𝑇 , where 𝑇 = ℎ𝑁 is the total simulation time. These equations can be combined with
𝑘𝐵/𝑁 ≪ 1 to find:

𝐵 ≪
2𝜋𝜏exp

ℎ

28 Chapter 3. Preparing Inputs

STACIE, Release 1.0

For example, 𝐵 = 𝜋𝜏exp
10ℎ will ensure that the relevant spectral features are reasonably pre-

served in the spectrum derived from the block averages.

Just as with the required length of the input sequences, a good choice of the block size cannot be
determined a priori. Also for the block size, a preliminary analysis with STACIE is recommended,
i.e., initially without block averages.

An application of STACIE with block averages can be found in the following example notebook:
Diffusion on a Surface with Newtonian Dynamics.

3.3 Recommendations for MD Simulations

3.3.1 Finite Size Effects
Transport properties derived from MD simulations of periodic systems can be affected by finite-
size effects. Finite-size effects are particularly significant for diffusion coefficients. This systematic
error is known to be proportional to 1/𝐿, where 𝐿 is the length scale of the simulation box. The
1/𝐿 dependence allows for extrapolation to infinite box size by linear regression or by applying
analytical corrections, such as the Yeh-Hummer correction [MMC+20, YH04].

3.3.2 Choice of Ensemble
TheNVE ensemble is generally recommended for computing transport coefficients, as thermostats
and barostats (used for simulations in the NVT and NpT ensembles) can interfere with system
dynamics and introduce bias in transport properties [MMC+20]. For production runs, the NpT
ensemble has an additional drawback: barostats introduce coordinate scaling, which directly per-
turbs the atomic mean squared displacements.

A good approach is to first equilibrate the system using NVT or NpT, before switching to NVE
for transport property calculations. The main difficulty is that a single NVE simulation does not
fully represent an NVT or NpT ensemble, even if the average temperature and pressure match
perfectly. (They become equivalent in the thermodynamic limit, but we always simulate finite
systems.)

NVE simulations lack the proper variance in the kinetic energy and/or volume. This issue can
be addressed by performing an ensemble of independent NVE simulations that are, as a whole,
representative of the NVT or NpT ensemble. Practically, this can be achieved by first performing
multiple NVT or NpT equilibration runs, depending on the ensemble of interest. The final state
of each equilibration run then serves as a starting point for an NVE run, without rescaling the
volume or kinetic energy, since rescaling to the mean would artificially lower the variance in
these quantities.

Note that correctly simulating multiple independent NVE runs can be technically challenging. It
is not a widely used approach, not all MD codes are properly tested for it, and the default settings
of some MD codes are not suitable for NVE simulations. Hence, one must always carefully check
the validity of the simulations:

• First, check the conserved quantity (total energy) for drift or large fluctuations. Compared
to the fluctuations of the kinetic energy, these deviations should be small.

• For the NVE simulations as a whole, the temperature distribution should be consistent with
the NVT or NpT ensemble.

• Even if the NVE runs are performed correctly, one must ensure that the number of NVE runs
is large enough to obtain a representative sample of the total energy distribution.

An additional challenge is the complexity of the MD workflow with restarts in different ensem-
bles and multiple independent runs. All examples in the STACIE documentation work with NVE

3.3. Recommendations for MD Simulations 29

STACIE, Release 1.0

production runs, show how to manage the workflow and validate the temperature distribution in
detail.

3.3.3 Thermostat and Barostat Settings
For the equilibration runs discussed above, the choice of thermostat and barostat time constants
is not critical, as long as the algorithms are valid (i.e., no Berendsen thermo- or barostats) and the
simulations are long enough to allow for full equilibration of the system within the equilibration
run. A local thermostat can be used to make the equilibration more efficient.

In some cases, e.g., to remain consistent with historical results, or because some of the chal-
lenges of NVE simulations cannot be overcome, one may still prefer to run production runs for
transport properties in the NVT ensemble. When you start a new project, however, always con-
sider using NVE production runs. If you must use NVT, studies suggest that well-tuned NVT
simulations yield comparable results to NVE simulations [BS13, FMP12, KGL+22]. Basconi et al.
recommended using a thermostat with slow relaxation times, global coupling, and continuous
rescaling (as opposed to random force contributions) [BS13]. These are typically the opposite of
the settings that are used for efficient equilibration runs. A drawback of slow relaxation times is
that longer simulations are required to fully sample the correct ensemble.

3.3.4 Block Averages
As discussed in the block averages section, the use of block averages is recommended for storing
simulation data. In the case ofMD simulations, a safe initial block size is 10 time steps. Usually, the
integration time step inMD is small enough to ensure that the fastest oscillations are sampledwith
10 steps per period. It is unlikely that transport properties are affected by the dynamics at shorter
time scales, so a block size of 10 time steps is a good starting point. Once you have performed
an initial analysis of the data, you can adjust (increase) the block size further to optimize the data
storage. If you take multiples of 10, it is easy to reprocess the initial block averages and convert
them to averages over larger blocks.

30 Chapter 3. Preparing Inputs

CHAPTER 4

Properties Derived from the Autocorrelation Function

This section outlines the statistical and physical quantities that can be computed as the integral
of an autocorrelation function. For each property, a code skeleton is provided as a starting point
for your calculations. All skeletons assume that you can load the relevant input data into NumPy
arrays.

First, we discuss a few properties that may be relevant to multiple scientific disciplines:

• The uncertainty of the mean of time-correlated data
• The exponential and integrated autocorrelation time

The following physicochemical transport properties can be computed as autocorrelation inte-
grals of outputs from molecular dynamics simulations, using the so-called Green-Kubo relations
[Gre52, Gre54, Hel60, Kub57]. These properties have recently been referred to as diagonal trans-
port coefficients [PDGB25].

• Shear viscosity, 𝜂
• Bulk viscosity, 𝜂𝑏
• Thermal conductivity, 𝜅
• Electrical conductivity, 𝜎
• Diffusion coefficient, 𝐷

4.1 Uncertainty of the Mean of Time-Correlated Data
When data exhibits time correlations, the error of the average cannot be computed by assuming
that all data are statistically independent. Because of time correlations, there are fewer indepen-
dent values than the number of elements in the data.

Quantifying the uncertainty of averages over time-correlated data is discussed in several text-
books, e.g., Appendix D of “Understanding Molecular Simulation” by Frenkel and Smit [FS02], or
Section 8.4 in the book “Computer Simulation of Liquids” (second edition) by Allen and Tildesley
[AT17].

31

STACIE, Release 1.0

4.1.1 Derivation
The sample mean of the time-dependent sequence �̂� is:

�̂�av = 1
𝑁

𝑁−1

∑
𝑛=0

�̂�𝑛

The variance of this sample mean is:

VAR[�̂�av] = 1
𝑁2

𝑁−1

∑
𝑛=0

𝑁−1

∑
𝑚=0

COV[�̂�𝑛 , �̂�𝑚]

We assume that the sequence is drawn from a stationary process, such that the covariance depends
only on Δ = 𝑛 − 𝑚:

𝑐Δ = COV[�̂�𝑛 , �̂�𝑚]

leading to:

VAR[�̂�av] = 1
𝑁2

𝑁−1

∑
𝑛=0

𝑁−1−𝑛

∑
Δ=−𝑛

COV[�̂�𝑛 , �̂�𝑛+Δ]

To simplify this expression, we must further assume that the second summation can be extended
from Δ = −∞ to Δ = +∞. This approximation is acceptable if the correlation time of the
sequence is small compared to 𝑁 . (In other words, we assume that 𝑐Δ decays to zero in a small
number of steps compared to 𝑁 .) With this assumption, we find:

VAR[�̂�av] ≈ 1
𝑁

+∞

∑
Δ=−∞

𝑐Δ

Analogously, when the sample mean is defined over a continuous function:

�̂�av = 1
𝑇 ∫

𝑇

0
�̂�(𝑡) d𝑡

the variance of this sample mean is:

VAR[�̂�av] = 1
𝑇 ∫

∞

−∞
𝑐(Δ𝑡) dΔ𝑡

4.1.2 How to Compute with STACIE?
Because no factor 1/2 is present in the expression for the variance of the mean, the factor 𝐹 must
compensate for the factor 1/2 in the autocorrelation integral. Hence, we must use 𝐹 = 2.
It is assumed that you can load the time-dependent sequences into a 2D NumPy array, where each
row is a sequence and each column a time step. If you have a physical time step (in some unit of
time), it is recommended that you use it as shown below, as it will result in more meaningful plots
and time scales. If not available, you can set timestep=1 or remove it from the script altogether.

32 Chapter 4. Properties Derived from the Autocorrelation Function

STACIE, Release 1.0

from stacie import compute_spectrum, estimate_acint, plot_results, PadeModel

Load your sequences and the time step.
The details depend on your use case.
sequences, timestep = ...

The sequences must be an array with shape (nseq, nstep).
Each row represents one time-dependent sequence with length nstep.
Get the total simulation time (sum over all sequences)
total_time = timestep * sequences.size

The factor 2 is just compensating for the factor 1/2 in the autocorrelation integral.
spectrum = compute_spectrum(

sequences,
prefactors=2.0 / total_time,
timestep=timestep,
include_zero_freq=False,

)
result = estimate_acint(spectrum, PadeModel([0, 2], [2]))
print("The mean", sequences.mean())
print("Error of the mean", np.sqrt(result.acint))
plot_results("error.pdf", result)

The spectrum at zero frequency must be excluded because it contains contributions from the
mean, i.e., not only from the autocorrelation integral.

The Pade model is used here because it is nearly always a good choice for error estimates. How-
ever, if the data does not feature an exponential decay of the ACF, this model may not be appro-
priate. In such cases, you can use the ExpPolyModel instead. For more details, see the section on
spectrum models.
A worked example can be found in the notebook the error of the mean of a sequence generated by
a Metropolis Monte Carlo algorithm.

4.2 Integrated and Exponential Autocorrelation Time

4.2.1 Definitions
There are two definitions of the autocorrelation time [Sok97]:

1. The integrated autocorrelation time is derived from the autocorrelation integral:

𝜏int =
∫+∞

−∞ 𝑐(Δ𝑡) dΔ𝑡
2𝑐(0) = ℐ

𝐹 𝑐(0)
where 𝑐(Δ𝑡) is the autocorrelation function, ℐ is the ACF defined with STACIE’s conven-
tions, and 𝐹 is the prefactor of the autocorrelation integral, introduced in the overview of the
autocorrelation integral.

2. The exponential autocorrelation time is defined as the limit of the exponential decay rate of
the autocorrelation function. In STACIE’s notation, this means that for large Δ𝑡, we have:

𝑐(Δ𝑡) ∝ exp
(

−|Δ𝑡|
𝜏exp)

The exponential autocorrelation time characterizes the slowest mode in the input. The pa-
rameter 𝜏exp can be estimated with the Pade model.

4.2. Integrated and Exponential Autocorrelation Time 33

STACIE, Release 1.0

Both correlation times are the same if the autocorrelation is nothing more than a two-sided ex-
ponentially decaying function:

𝑐(Δ𝑡) = 𝑐0 exp
(

−|Δ𝑡|
𝜏exp)

In practice, however, the two correlation times may differ. This can happen if the input sequences
are a superposition of signals with different relaxation times, or when they contain non-diffusive
contributions such as oscillations at certain frequencies. It is even not guaranteed that the expo-
nential autocorrelation time is always well-defined, e.g., when the ACF decays as a power law.

4.2.2 Which Definition Should I Use?
There is no right or wrong. Both definitions are useful and relevant for different applications.

1. The integrated correlation time is related to the variance of the mean of a time-correlated
sequence:

VAR[�̂�av] = VAR[�̂�𝑛]
𝑁

2𝜏int
ℎ

The first factor is the “naive” variance of the mean, assuming that all 𝑁 inputs are uncor-
related. The second factor corrects for the presence of time correlations and is called the
statistical inefficiency [AT17, FC70]:

𝑠 = 2𝜏int
ℎ

where ℎ is the time step. 𝑠 can be interpreted as the spacing between two independent
samples.

2. The exponential correlation time can be used to estimate the required length of the input
sequences when computing an autocorrelation integral. The resolution of the frequency
axis of the power spectrum is 1/𝑇 , where 𝑇 = ℎ𝑁 is the total simulation time, ℎ is the
time step, and 𝑁 the number of steps. This resolution must be fine enough to resolve the
zero-frequency peak associated with the exponential decay of the autocorrelation function.
The width of the peak can be derived from the Pade model and is 1/2𝜋𝜏exp. To have ample
frequency grid points in this first peak, the simulation time must be sufficiently long:

𝑇 ≫ 2𝜋𝜏exp
For example, 𝑇 = 20𝜋𝜏exp will provide a decent resolution.

Of course, before you start generating the data (e.g., through simulations), the value of 𝜏exp
is yet unclear. Without prior knowledge of 𝜏exp, you should first analyze preliminary data
to get a first estimate of 𝜏exp, after which you can plan the data generation more carefully.
More details can be found in the section on data sufficiency.
If you notice that your input sequences are many orders of magnitude longer than 𝜏exp, the
number of relevant frequency grid points in the spectrum can become impractically large. In
this case, you can split up the input sequences into shorter parts with stacie.utils.split().
However, a better solution is to plan ahead more carefully and avoid sequences that are far
longer than necessary. It is more efficient to generate more fully independent and shorter
sequences instead.

Note that 𝜏exp is also related to the block size when working with block averages to reduce
storage requirements of production simulations.

34 Chapter 4. Properties Derived from the Autocorrelation Function

STACIE, Release 1.0

4.2.3 How to Compute with STACIE?
It is assumed that you can load one or (ideally) more time-dependent sequences of equal length
into a 2D NumPy array sequences. Each row in this array is a sequence, and the columns corre-
spond to time steps. You also need to store the time step in a Python variable. (If your data does
not have a time step, just omit it from the code below.)

With these data, the autocorrelation times are computed as follows:

import numpy as np
from stacie import compute_spectrum, estimate_acint, plot_results, PadeModel

Load all the required inputs, the details of which will depend on your use case.
sequences = ...
timestep = ...

Computation with STACIE.
spectrum = compute_spectrum(sequences, timestep=timestep)
result = estimate_acint(spectrum, PadeModel([0, 2], [2]))
print("Exponential autocorrelation time", result.corrtime_exp)
print("Uncertainty of the exponential autocorrelation time", result.corrtime_exp_std)
print("Integrated autocorrelation time", result.corrtime_int)
print("Uncertainty of the integrated autocorrelation time", result.corrtime_int_std)

Aworked example can be found in the notebook Diffusion on a Surface with Newtonian Dynamics.
It also discusses the correlation times associated with the diffusive motion of the particles.

4.3 Shear Viscosity
The shear viscosity of a fluid is related to the autocorrelation of microscopic off-diagonal pressure
tensor fluctuations as follows:

𝜂 = 𝑉
𝑘B𝑇

1
2 ∫

+∞

−∞
COV[̂𝑃𝑥𝑦(𝑡0) , ̂𝑃𝑥𝑦(𝑡0 + Δ𝑡)] dΔ𝑡

where 𝑉 is the volume of the simulation cell, 𝑘B is the Boltzmann constant, 𝑇 is the temperature,
and ̂𝑃𝑥𝑦 is an instantaneous off-diagonal pressure tensor element. The time origin 𝑡0 is arbitrary:
the expected value is computed over all possible time origins.

The derivation of this result can be found in several references, e.g., Appendix C.3.2 of “Under-
standing Molecular Simulation” by Frenkel and Smit [FS02], Section 8.4 of “Theory of Simple
Liquids” by Hansen and McDonald [HM13], or Section 13.3.1 of “Statistical Mechanics: Theory
and Molecular Simulation” by Tuckerman [Tuc23].

4.3.1 Five Independent Anisotropic Pressure Contributions of an
Isotropic Liquid

To the best of our knowledge, there is no prior work demonstrating how to prepare five inde-
pendent inputs with anisotropic pressure tensor contributions that can be used as inputs to the
autocorrelation integral. For instance, the result below is not mentioned in a recent comparison
of methods for incorporating diagonal elements of the traceless pressure tensor [MFF23]. Since
a pressure tensor has six degrees of freedom, one of which corresponds to the isotropic pressure,
the remaining five should be associated with anisotropic contributions.

It is well known that the viscosity of an isotropic fluid can be derived from six off-diagonal and
diagonal traceless pressure tensor elements [DE94]. However, by subtracting the isotropic term,

4.3. Shear Viscosity 35

STACIE, Release 1.0

the six components of the traceless pressure tensor become statistically correlated. For a proper
uncertainty analysis of the estimated viscosity, STACIE requires the inputs to be statistically in-
dependent, so the Daivis and Evans equation cannot be directly used. Here, we provide a trans-
formation of the pressure tensor that yields five independent contributions, each of which can be
used individually to compute the viscosity. The average of these five viscosities is equivalent to
the result of Daivis and Evans.

To facilitate working with linear transformations of pressure tensors, we adopt Voigt notation:

�̂� = [̂𝑃𝑥𝑥 ̂𝑃𝑦𝑦 ̂𝑃𝑧𝑧 ̂𝑃𝑦𝑧 ̂𝑃𝑧𝑥 ̂𝑃𝑥𝑦]
⊤

The transformation to the traceless form then becomes �̂�tl = 𝐓�̂� with:

𝐓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2
3 −1

3 −1
3

−1
3

2
3 −1

3
−1

3 −1
3

2
3 1

1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

This symmetric matrix is an idempotent projection matrix and has an eigendecomposition 𝐓 =
𝐔𝚲𝐔⊤ with:

diag(𝚲) =

⎡
⎢
⎢
⎢
⎢
⎣

0
1
1
1
1
1

⎤
⎥
⎥
⎥
⎥
⎦

𝐔 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
√3 √

2
3 0

1
√3

− 1
√6

1
√2

1
√3

− 1
√6

− 1
√2

1
1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The zero eigenvalue corresponds to the isotropic component being removed. Transforming the
pressure tensor to this eigenvector basis constructs five anisotropic components. Since this trans-
formation is orthonormal, the five components remain statistically uncorrelated. It can be shown
that the first two anisotropic components must be rescaled by a factor of 1/√2, as in �̂�′ = 𝐕�̂�,
with:

𝐕 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
√3

0
− 1

2√3
1
2

− 1
2√3

−1
2

1
1

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

to obtain five time-dependent anisotropic pressure components that can be used as inputs to the
viscosity calculation:

𝜂 = 𝑉
𝑘B𝑇

1
2 ∫

+∞

−∞
COV[̂𝑃 ′

𝑖 (𝑡0) , ̂𝑃 ′
𝑖 (𝑡0 + Δ𝑡)] dΔ𝑡 ∀ 𝑖 ∈ {1, 2, 3, 4, 5}

36 Chapter 4. Properties Derived from the Autocorrelation Function

STACIE, Release 1.0

For the last three components, this result is trivial. The second component, ̂𝑃 ′
2 , is found by rotating

the Cartesian axes 45∘ about the 𝑥-axis.

ℛ =
⎡
⎢
⎢
⎢
⎣

1
1

√2
− 1

√2
1

√2
1

√2

⎤
⎥
⎥
⎥
⎦

�̂� =
⎡
⎢
⎢
⎣

̂𝑃𝑥𝑥 ̂𝑃𝑥𝑦 ̂𝑃𝑧𝑥
̂𝑃𝑥𝑦 ̂𝑃𝑦𝑦 ̂𝑃𝑦𝑧
̂𝑃𝑧𝑥 ̂𝑃𝑦𝑧 ̂𝑃𝑧𝑧

⎤
⎥
⎥
⎦

𝐑�̂�𝐑⊤ =

⎡
⎢
⎢
⎢
⎢
⎣

̂𝑃𝑥𝑥
√2 ̂𝑃𝑥𝑦

2 − √2 ̂𝑃𝑧𝑥
2

√2 ̂𝑃𝑥𝑦
2 + √2 ̂𝑃𝑧𝑥

2
√2 ̂𝑃𝑥𝑦

2 − √2 ̂𝑃𝑧𝑥
2

̂𝑃𝑦𝑦
2 − ̂𝑃𝑦𝑧 + ̂𝑃𝑧𝑧

2
̂𝑃𝑦𝑦
2 − ̂𝑃𝑧𝑧

2
√2 ̂𝑃𝑥𝑦

2 + √2 ̂𝑃𝑧𝑥
2

̂𝑃𝑦𝑦
2 − ̂𝑃𝑧𝑧

2
̂𝑃𝑦𝑦
2 + ̂𝑃𝑦𝑧 + ̂𝑃𝑧𝑧

2

⎤
⎥
⎥
⎥
⎥
⎦

In the new axes frame, the last off-diagonal element is a proper anisotropic term, expressed as
̂𝑃𝑦𝑦
2 − ̂𝑃𝑧𝑧

2 .

For the first component, ̂𝑃 ′
1 , the proof is slightly more intricate. There is no rotation of the Carte-

sian axis frame that results in this linear combination appearing as an off-diagonal element. In-
stead, it is simply a scaled sum of two anisotropic stress components:

̂𝑃 ′
1 = 𝛼

(
̂𝑃𝑥𝑥 −

̂𝑃𝑦𝑦
2 −

̂𝑃𝑧𝑧
2)

= 𝛼
(

̂𝑃𝑥𝑥
2 −

̂𝑃𝑦𝑦
2)

+ 𝛼
(

̂𝑃𝑥𝑥
2 −

̂𝑃𝑧𝑧
2)

By working out the autocorrelation functions of ̂𝑃 ′
1 and ̂𝑃 ′

2 one finds that, for the case of an
isotropic liquid, they have the same expected values if 𝛼 = 1

√3
. First expand the covariances:

COV[̂𝑃 ′
1 (𝑡0) , ̂𝑃 ′

1 (𝑡0 + Δ𝑡)] =

− 𝛼2

2 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)] − 𝛼2

2 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

− 𝛼2

2 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)] − 𝛼2

2 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

+ 𝛼2

4 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)] + 𝛼2

4 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

+ 𝛼2

4 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)] + 𝛼2

4 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)]

+ 𝛼2 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

COV[̂𝑃 ′
2 (𝑡0) , ̂𝑃 ′

2 (𝑡0 + Δ𝑡)] =

− 1
4 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)] − 1

4 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)]

+ 1
4 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)] + 1

4 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)]

Because the liquid is isotropic, permutations of Cartesian axes do not affect the expected values,

4.3. Shear Viscosity 37

STACIE, Release 1.0

which greatly simplifies the expressions.

COV[̂𝑃 ′
1 (𝑡0), ̂𝑃 ′

1 (𝑡0 + Δ𝑡)]
3𝛼2

2 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

− 3𝛼2

4 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)] − 3𝛼2

4 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

COV[̂𝑃 ′
2 (𝑡0), ̂𝑃 ′

2 (𝑡0 + Δ𝑡)] =
1
2 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

− 1
4 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)] − 1

4 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

These two expected values are consistent when 𝛼2 = 1/3.
Using the same expansion technique, it is shown below that the average viscosity over the five
components proposed here is equivalent to the equation proposed by Daivis and Evans [DE94]:

𝜂 = 1
5

𝑉
𝑘B𝑇

1
2 ∫

+∞

−∞

1
2 E [�̂�tl(𝑡0) ∶ �̂�tl(𝑡0 + Δ𝑡)] dΔ𝑡

(This is Eq. A5 in their paper rewritten in our notation.) Working out the expansion, using
̂𝑃tl,𝑥𝑥 = 1

3 (2 ̂𝑃𝑥𝑥 − ̂𝑃𝑦𝑦 − ̂𝑃𝑧𝑧) and similar definitions for the two other Cartesian components, we
get:

1
2 E [�̂�tl(𝑡0) ∶ �̂�tl(𝑡0 + Δ𝑡)] =

COV[̂𝑃𝑦𝑧(𝑡0) , ̂𝑃𝑦𝑧(𝑡0 + Δ𝑡)]
+ COV[̂𝑃𝑧𝑥(𝑡0) , ̂𝑃𝑧𝑥(𝑡0 + Δ𝑡)]
+ COV[̂𝑃𝑥𝑦(𝑡0) , ̂𝑃𝑥𝑦(𝑡0 + Δ𝑡)]

+ 1
3 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

+ 1
3 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)]

+ 1
3 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)]

− 1
6 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)] − 1

6 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)]

− 1
6 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)] − 1

6 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)]

− 1
6 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)] − 1

6 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

We can do the same for our average viscosity over the five independent components:

𝜂 = 1
5

𝑉
𝑘B𝑇

1
2 ∫

+∞

−∞

5

∑
𝑖=1

COV[̂𝑃 ′
𝑖 (𝑡0) , ̂𝑃 ′

𝑖 (𝑡0 + Δ𝑡)] dΔ𝑡

38 Chapter 4. Properties Derived from the Autocorrelation Function

STACIE, Release 1.0

Working out the expansion of the five terms in Cartesian pressure tensor components yields:

COV[̂𝑃 ′
1 (𝑡0) , ̂𝑃 ′

1 (𝑡0 + Δ𝑡)] =

+ 1
3 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

+ 1
12 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)]

+ 1
12 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)]

+ 1
12 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)] + 1

12 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)]

− 1
6 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)] − 1

6 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)]

− 1
6 COV[̂𝑃𝑥𝑥(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)] − 1

6 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑥𝑥(𝑡0 + Δ𝑡)]

COV[̂𝑃 ′
2 (𝑡0) , ̂𝑃 ′

2 (𝑡0 + Δ𝑡)] =

+ 1
4 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)]

+ 1
4 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)]

− 1
4 COV[̂𝑃𝑦𝑦(𝑡0) , ̂𝑃𝑧𝑧(𝑡0 + Δ𝑡)] − 1

4 COV[̂𝑃𝑧𝑧(𝑡0) , ̂𝑃𝑦𝑦(𝑡0 + Δ𝑡)]

COV[̂𝑃 ′
3 (𝑡0) , ̂𝑃 ′

3 (𝑡0 + Δ𝑡)] = COV[̂𝑃𝑦𝑧(𝑡0) , ̂𝑃𝑦𝑧(𝑡0 + Δ𝑡)]

COV[̂𝑃 ′
4 (𝑡0) , ̂𝑃 ′

4 (𝑡0 + Δ𝑡)] = COV[̂𝑃𝑧𝑥(𝑡0) , ̂𝑃𝑧𝑥(𝑡0 + Δ𝑡)]

COV[̂𝑃 ′
5 (𝑡0) , ̂𝑃 ′

5 (𝑡0 + Δ𝑡)] = COV[̂𝑃𝑥𝑦(𝑡0) , ̂𝑃𝑥𝑦(𝑡0 + Δ𝑡)]

Adding these five contributions together reproduces the exact same expansion as derived by
Daivis and Evans.

Using the five anisotropic components, as proposed here, offers significant advantages. It ex-
plicitly defines the number of independent sequences used as input, enabling precise uncertainty
quantification.

4.3.2 How to Compute with STACIE?
It is assumed that you can load the time-dependent pressure tensor components (diagonal and
off-diagonal) into a 2D NumPy array pcomps. Each row of this array corresponds to one pressure
tensor component in the order ̂𝑃𝑥𝑥, ̂𝑃𝑦𝑦, ̂𝑃𝑧𝑧, ̂𝑃𝑧𝑥, ̂𝑃𝑦𝑧, ̂𝑃𝑥𝑦 (same order as in Voigt notation).
Columns correspond to time steps. You also need to store the cell volume, temperature, Boltzmann
constant, and time step in Python variables, all in consistent units. With these requirements, the
shear viscosity can be computed as follows:

import numpy as np
from stacie import compute_spectrum, estimate_acint, plot_results, PadeModel, UnitConfig

Load all the required inputs, the details of which will depend on your use case.
pcomps = ...
volume, temperature, boltzmann_const, timestep = ...

(continues on next page)

4.3. Shear Viscosity 39

STACIE, Release 1.0

(continued from previous page)

Convert pressure components to five independent components.
This is the optimal usage of pressure information
and it informs STACIE of the number of independent inputs.
indep_pcomps = np.array([

(pcomps[0] - 0.5 * pcomps[1] - 0.5 * pcomps[2]) / np.sqrt(3),
0.5 * pcomps[1] - 0.5 * pcomps[2],
pcomps[3],
pcomps[4],
pcomps[5],

])

Actual computation with STACIE.
spectrum = compute_spectrum(

indep_pcomps,
prefactors=volume / (temperature * boltzmann_const),
timestep=timestep,

)
result = estimate_acint(spectrum, PadeModel([0, 2], [2]))
print("Shear viscosity:", result.acint)
print("Uncertainty of the shear viscosity:", result.acint_std)

The unit configuration assumes SI units are used systematically.
You may need to adapt this to the units of your data.
uc = UnitConfig(

acint_unit_str="Pa s",
time_unit=1e-12,
time_unit_str="ps",
freq_unit=1e12,
freq_unit_str="THz",

)
plot_results("shear_viscosity.pdf", result, uc)

This script can be trivially extended to combine data from multiple trajectories.

A worked example can be found in the notebook Shear viscosity of a Lennard-Jones Liquid Near
the Triple Point (LAMMPS)

4.4 Bulk Viscosity
The bulk viscosity of a fluid is related to the autocorrelation of isotropic pressure fluctuations as
follows:

𝜂𝑏 = 𝑉
𝑘B𝑇

1
2 ∫

+∞

−∞
COV[̂𝑃iso(𝑡0) , ̂𝑃iso(𝑡0 + Δ𝑡)] dΔ𝑡

where 𝑉 represents the volume of the simulation cell, 𝑘B is the Boltzmann constant, 𝑇 is the
temperature, and ̂𝑃iso is the instantaneous isotropic pressure. The time origin 𝑡0 is arbitrary: the
expected value is computed over all possible time origins.

The derivation of this result can be found in several references, e.g., Section 8.5 of “Theory of
Simple Liquids” by Hansen and McDonald [HM13], or Section 2.7 of “Computer Simulation of
Liquids” by Allen and Tildesley [AT17].

As will be shown below, one must take into account that the average pressure is not zero. For

40 Chapter 4. Properties Derived from the Autocorrelation Function

STACIE, Release 1.0

STACIE, there is no need to subtract the average pressure first. Instead, you can simply drop the
DC component from the spectrum.

4.4.1 How to Compute with STACIE?
It is assumed that you can load the diagonal, time-dependent pressure tensor components into a
2DNumPy array pcomps. (The same array as for shear viscosity can be used.) Each row of this array
corresponds to one pressure tensor component in the order ̂𝑃𝑥𝑥, ̂𝑃𝑦𝑦, ̂𝑃𝑧𝑧, ̂𝑃𝑧𝑥, ̂𝑃𝑦𝑧, ̂𝑃𝑥𝑦. (This is
the same order as in Voigt notation. The last three components are not used and can be omitted.)
Columns correspond to time steps. You also need to store the cell volume, temperature, Boltzmann
constant, and time step in Python variables, all in consistent units. With these requirements, the
bulk viscosity can be computed as follows:

import numpy as np
from stacie import compute_spectrum, estimate_acint, plot_results, PadeModel, UnitConfig

Load all the required inputs, the details of which will depend on your use case.
pcomps = ...
volume, temperature, boltzmann_const, timestep = ...

Convert pressure components to the isotropic pressure
piso = (pcomps[0] + pcomps[1] + pcomps[2]) / 3

Actual computation with STACIE.
spectrum = compute_spectrum(

piso,
prefactors=volume / (temperature * boltzmann_const),
timestep=timestep,
include_zero_freq=False,

)
result = estimate_acint(spectrum, PadeModel([0, 2], [2]))
print("Bulk viscosity:", result.acint)
print("Uncertainty of the bulk viscosity:", result.acint_std)

The unit configuration assumes SI units are used systematically.
You may need to adapt this to the units of your data.
uc = UnitConfig(

acint_unit_str="Pa s",
time_unit=1e-12,
time_unit_str="ps",
freq_unit=1e12,
freq_unit_str="THz",

)
plot_results("bulk_viscosity.pdf", result, uc)

This script can be trivially extended to combine data from multiple trajectories.

A worked example can be found in the notebook Bulk viscosity of a Lennard-Jones Liquid Near the
Triple Point (LAMMPS)

4.4. Bulk Viscosity 41

STACIE, Release 1.0

4.5 Thermal Conductivity
The thermal conductivity of a system is related to the autocorrelation of the heat flux as follows:

𝜅 = 1
𝑉 𝑘B𝑇 2

1
3 ∑𝛼=𝑥,𝑦,𝑧

1
2 ∫

+∞

−∞
COV[̂𝐽h

𝛼 (𝑡0) , ̂𝐽h
𝛼 (𝑡0 + Δ𝑡)] dΔ𝑡

where 𝑉 is the volume of the simulation cell, 𝑘B is the Boltzmann constant, 𝑇 is the temperature,
and ̂𝐽h

𝛼 is the instantaneous heat flux along one of the Cartesian directions. The time origin 𝑡0 is
arbitrary: the expected value is computed over all possible time origins.

The derivation of this result can be found in Section 8.5 of “Theory of Simple Liquids” by Hansen
and McDonald [HM13].

Warning

The LAMMPS compute/heat flux command is reported to produce unphysical results when
many-body interactions (e.g., angle, dihedral, impropers) are present [JWB+19], [SMKO19],
[BBW19], [SMKO21]. This command only treats pairwise interactions correctly. If this is
relevant, one should use the compute heat/flux command with compute centroid/stress/atom.
For systems with only two-body interactions, the compute heat/flux command with the compute
stress/atom command is sufficient. Molecular liquids are practically always simulated with
some many-body terms, and thus require the compute centroid/stress/atom command.

4.5.1 How to Compute with STACIE?
It is assumed that you can load the time-dependent heat flux components into a 2D NumPy ar-
ray heatflux. Each row of this array corresponds to one heat flux component in the order ̂𝐽𝑥,

̂𝐽𝑦, and ̂𝐽𝑧. Columns correspond to time steps. You also need to store the cell volume, tempera-
ture, Boltzmann constant, and time step in Python variables, all in consistent units. With these
requirements, the thermal conductivity can be computed as follows:

import numpy as np
from stacie import compute_spectrum, estimate_acint, plot_results, PadeModel, UnitConfig

Load all the required inputs, the details of which will depend on your use case.
heatflux = ...
volume, temperature, boltzmann_const, timestep = ...

Actual computation with STACIE.
Note that the average spectrum over the three components is implicit.
There is no need to include 1/3 here.
spectrum = compute_spectrum(

heatflux,
prefactors=1.0 / (volume * temperature**2 * boltzmann_const),
timestep=timestep,

)
result = estimate_acint(spectrum, PadeModel([0, 2], [2]))
print("Thermal conductivity", result.acint)
print("Uncertainty of the thermal conductivity", result.acint_std)

The unit configuration assumes SI units are used systematically.
(continues on next page)

42 Chapter 4. Properties Derived from the Autocorrelation Function

https://docs.lammps.org/compute_heat_flux.html

STACIE, Release 1.0

(continued from previous page)

You may need to adapt this to the units of your data.
uc = UnitConfig(

acint_symbol="κ",
acint_unit_str="W m$^{-1}$ K$^{-1}$",
time_unit=1e-12,
time_unit_str="ps",
freq_unit=1e12,
freq_unit_str="THz",

)
plot_results("thermal_conductivity.pdf", result, uc)

This script is trivially extended to combine data from multiple trajectories.

A worked example can be found in the notebook Thermal Conductivity of a Lennard-Jones Liquid
Near the Triple Point (LAMMPS).

4.6 Ionic Electrical Conductivity
The ionic electrical conductivity of a system is related to the autocorrelation of the charge current
as follows:

𝜎 = 1
𝑉 𝑘B𝑇

1
𝑑

𝑑

∑
𝑖=1

1
2 ∫

+∞

−∞
COV[̂𝐽 c

𝑖 (𝑡0) , ̂𝐽 c
𝑖 (𝑡0 + Δ𝑡)] dΔ𝑡

where 𝑉 is the volume of the simulation cell, 𝑘B is the Boltzmann constant, 𝑇 is the temperature,
𝑑 is the dimensionality of the system, and ̂𝐽 c

𝑖 is the instantaneous charge current along one of
the Cartesian directions. The time origin 𝑡0 is arbitrary: the expected value is computed over all
possible time origins.

The derivation of this result can be found in Appendix C.3.1 of “Understanding Molecular Simu-
lation” by Frenkel and Smit [FS02], or Section 7.7 of “Theory of Simple Liquids” by Hansen and
McDonald [HM13].

If your simulation code does not print out the charge current, it can also be derived from the
velocities (̂𝐯𝑛(𝑡)) and the net charges (𝑞𝑛) of the charge carriers as follows:

̂𝐉(𝑡) =
𝑁𝑞

∑
𝑛=1

𝑞𝑛 ̂𝐯𝑛(𝑡)

where 𝑁𝑞 is the number of charge carriers. The charge current can also be interpreted as the time
derivative of the instantaneous dipole moment of the system.

In the case of molecular ions, the center-of-mass velocity can be used, but this is not critical. You
will get the same conductivity (possibly with slightly larger uncertainties) when using the velocity
of any single atom in a molecular ion instead. The charges of ions must be integer multiples of
the elementary charge [GB19].

4.6.1 Nernst-Einstein Approximation
The electrical conductivity is related to the (correlated) diffusion of the charge carriers. When
correlations between the ions are neglected, one obtains the Nernst-Einstein approximation of
the conductivity in terms of the self-diffusion coefficients of the ions. We include the derivation
here because a consistent treatment of the pre-factors can be challenging. (Literature references

4.6. Ionic Electrical Conductivity 43

STACIE, Release 1.0

are not always consistent due to differences in notation.) Our derivation is general, i.e., for an
arbitrary number of different types of charge carriers, which are not restricted to monovalent
ions.

First, insert the expression for the charge current into the conductivity and then bring the sums
out of the integral:

𝜎 = 1
𝑉 𝑘B𝑇

1
𝑑

𝑑

∑
𝑖=1

𝑁𝑞

∑
𝑛=1

𝑁𝑞

∑
𝑚=1

𝑞𝑛𝑞𝑚
1
2 ∫

+∞

−∞
COV[̂𝑣𝑛,𝑖(𝑡0) , ̂𝑣𝑚,𝑖(𝑡0 + Δ𝑡)] dΔ𝑡

In the Nernst-Einstein approximation, all correlations between ion velocities (even of the same
type) are neglected by discarding all off-diagonal terms in the double sum over 𝑛 and 𝑚.

𝜎 ≈ 𝜎𝑁𝐸 = 1
𝑉 𝑘B𝑇

𝑁𝑞

∑
𝑛=1

𝑞2
𝑛

1
𝑑

𝑑

∑
𝑖=1

1
2 ∫

+∞

−∞
COV[̂𝑣𝑛,𝑖(𝑡0) , ̂𝑣𝑛,𝑖(𝑡0 + Δ𝑡)] dΔ𝑡

To further connect this equation to diffusion coefficients, the number of types of charge carriers
is called 𝐾 . Each type 𝑘 ∈ {1, … , 𝐾} has a set of ions 𝑆𝑘 with charge 𝑞𝑘. The number of ions in
each set is 𝑁𝑘 = |𝑆𝑘|. With these conventions, we can rewrite the equation as:

𝜎𝑁𝐸 = 1
𝑉 𝑘B𝑇

𝐾

∑
𝑘=1

𝑞2
𝑘𝑁𝑘

⎛
⎜
⎜
⎝

1
𝑁𝑘𝑑

𝑑

∑
𝑖=1

∑
𝑛∈𝑆𝑘

1
2 ∫

+∞

−∞
COV[̂𝑣𝑛,𝑖(𝑡0) , ̂𝑣𝑛,𝑖(𝑡0 + Δ𝑡)] dΔ𝑡

⎞
⎟
⎟
⎠

The part between parentheses is the self-diffusion coefficient of the ions of type 𝑘. Finally, we get:

𝜎NE = 1
𝑘B𝑇

𝐾

∑
𝑘=1

𝑞2
𝑘𝜌𝑘𝐷𝑘

where 𝜌𝑘 and 𝐷𝑘 are the concentration and the diffusion coefficient of charge carrier 𝑘, respec-
tively. The Nernst-Einstein approximation may not seem useful because it neglects correlated
motion between different types of charge carriers. (The effect may be large!) Nevertheless, a
comparison of the Nernst-Einstein approximation to the actual conductivity can help to quantify
the degree of such correlations. [SSWZ20]

4.6.2 How to Compute with STACIE?
It is assumed that you can load the time-dependent ion velocity components into a NumPy array
ionvels. In the example below, this is a three-index array, where the first index is for the ion,
the second for the Cartesian component, and the last for the time step. To compute the charge
current, you need to put the charges of the ions in an array charges. You also need to store the
cell volume, temperature, Boltzmann constant, and time step in Python variables, all in consistent
units. With these requirements, the ionic electrical conductivity can be computed as follows:

import numpy as np
from stacie import compute_spectrum, estimate_acint, plot_results, ExpPolyModel, UnitConfig

Load all the required inputs, the details of which will depend on your use case.
We assume ionvels has shape `(nstep, natom, ncart)`
and charges is a 1D array with shape `(natom,)`
ionvels = ...
charges = ...

(continues on next page)

44 Chapter 4. Properties Derived from the Autocorrelation Function

STACIE, Release 1.0

(continued from previous page)

volume, temperature, boltzmann_const, timestep = ...

Compute the charge current
chargecurrent = np.einsum("ijk,j->ki", ionvels, charges)

Actual computation with STACIE.
Note that the average spectrum over the three components is implicit.
There is no need to include 1/3 here.
Note that the zero-frequency component is usually not reliable
because usually the total momentum is constrained or conserved.
spectrum = compute_spectrum(

chargecurrent,
prefactors=1.0 / (volume * temperature * boltzmann_const),
timestep=timestep,
include_zero_freq=False,

)
result = estimate_acint(spectrum, ExpPolyModel([0, 1, 2]))
print("Electrical conductivity", result.acint)
print("Uncertainty of the electrical conductivity", result.acint_std)

The unit configuration assumes SI units are used systematically.
You may need to adapt this to the units of your data.
uc = UnitConfig(

acint_unit_str="S m$^{-1}$",
time_unit=1e-12,
time_unit_str="ps",
freq_unit=1e12,
freq_unit_str="THz",

)
plot_results("electrical_conductivity.pdf", result, uc)

There are several ways to alter this script, depending on your needs and the available data:

• This script is trivially extended to combine data from multiple trajectories.

• Some codes can directly output the charge current, which will reduce the amount of data
stored on disk.

• Some simulation codes will print out the instantaneous dipole moment, to which finite dif-
ferences can be applied to compute the charge current. Even if the dipole moment is printed
only every 𝐵 steps, this approximation is useful and corresponds to taking block averages
of the charge current. See the section on block averages for more details.

A worked example can be found in the notebook Ionic Conductivity and Self-diffusivity in Molten
Sodium Chloride at 1100 K (OpenMM)

4.7 Diffusion Coefficient
The diffusion coefficient (or diffusivity) of a set of 𝑁 particles in 𝑑 dimensions is given by:

𝐷 = 1
𝑁 𝑑

1
2 ∫

+∞

−∞

𝑁

∑
𝑛=1

𝑑

∑
𝑖=1

COV[̂𝑣𝑛,𝑖(𝑡0), ̂𝑣𝑛,𝑖(𝑡0 + Δ𝑡)] dΔ𝑡

where ̂𝑣𝑛,𝑖(𝑡) is the 𝑖-th Cartesian component of the time-dependent velocity of particle 𝑛. For
molecular systems, the center-of-mass velocities are typically used.

4.7. Diffusion Coefficient 45

STACIE, Release 1.0

For a simple fluid, the result is called the self-diffusion coefficient or self-diffusivity. The same
expression applies to the diffusion coefficient of components of a mixture or guest molecules in
porous media.

Note that this definition is valid only if the particles of interest exhibit diffusive motion. If they os-
cillate around a fixed center, the zero-frequency component of the velocity autocorrelation spec-
trum will approach zero, resulting in a diffusion coefficient of zero. This scenario may occur
when the diffusion is governed by an activated hopping process, and the simulation is too short
to capture such rare events.

The derivation of this result can be found in several references, e.g., Section 4.4.1 of “Understand-
ing Molecular Simulation” by Frenkel and Smit [FS02], Section 7.7 of “Theory of Simple Liquids”
by Hansen and McDonald [HM13], or Section 13.3.2 of “Statistical Mechanics: Theory and Molec-
ular Simulation” by Tuckerman [Tuc23].

4.7.1 How to Compute with STACIE?
It is assumed that you can load the particle velocities into a 2D NumPy array velocities. Each row
of this array corresponds to a single Cartesian component of a particle’s velocity, while each col-
umn corresponds to a specific time step. You should also store the time step in a Python variable.
The diffusion coefficient can then be computed as follows:

import numpy as np
from stacie import compute_spectrum, estimate_acint, plot_results, ExpPolyModel, UnitConfig

Load all the required inputs, the details of which will depend on your use case.
velocities = ...
timestep = ...

Computation with STACIE.
Note that the factor 1/(N*d) is implied:
the average spectrum over all velocity components is computed.
Note that the zero-frequency component is usually not reliable
because typically the total momentum is constrained or conserved.
spectrum = compute_spectrum(

velocities,
prefactors=1.0,
timestep=timestep,
include_zero_freq=False,

)
result = estimate_acint(spectrum, ExpPolyModel([0, 1, 2]))
print("Diffusion coefficient", result.acint)
print("Uncertainty of the diffusion coefficient", result.acint_std)

The unit configuration assumes SI units are used systematically.
You may need to adapt this to the units of your data.
uc = UnitConfig(

acint_symbol="D",
acint_unit_str="m2/s",
time_unit=1e-12,
time_unit_str="ps",
freq_unit=1e12,
freq_unit_str="THz",

)
plot_results("diffusion_coefficient.pdf", result, uc)

One can also use particle positions and apply a finite difference approximation to obtain the ve-

46 Chapter 4. Properties Derived from the Autocorrelation Function

STACIE, Release 1.0

locities. (For trajectories obtained with a Verlet integrator, this does not introduce additional
approximations.) When positions are recorded every 𝐵 steps, the finite difference approximation
can also be applied. The result is equivalent to block-averaging velocities and can thus be used as
inputs for STACIE. Consult the section on block averages for more details.

A worked example can be found in the notebook Diffusion on a Surface with Newtonian Dynamics.

4.7. Diffusion Coefficient 47

STACIE, Release 1.0

48 Chapter 4. Properties Derived from the Autocorrelation Function

CHAPTER 5

Worked Examples

All the examples are also available as Jupyter notebooks and can be downloaded as one ZIP archive
here:

Gözdenur Toraman, Toon Verstraelen, “Example Trajectory Data and Jupyter Notebooks
Showing How to Compute Various Properties with STACIE” June 2025 https://doi.org/10.
5281/zenodo.15543903

Warning

The ZIP file will contain executable notebooks and simulation outputs used by the examples.
Hyperlinks from these notebooks to the rest of the documentation and literature references
will not work.

This documentation contains the rendered notebooks, including all outputs, in the following sec-
tions. We recommend startingwith theminimal example, as it is the easiest to run and understand.
This example thoroughly explains STACIE’s output and how to interpret the plots. The other ex-
amples produce similar outputs and plots, but the meaning of all outputs is not repeated in each
example.

The first few notebooks are completely self-contained. They generate the data and analyze it with
STACIE:

5.1 Minimal Example
Themain goal of this example is to demonstrate how to use STACIEwith aminimal, self-contained
example. First, the properties of a basic Markov process are discussed, and then data is generated
using this process. (A detailed derivation of the analytical results is provided in the last section.)
The Markov chains are analyzed using two models, followed by some comments on their applica-
bility.

49

https://doi.org/10.5281/zenodo.15543903
https://doi.org/10.5281/zenodo.15543903

STACIE, Release 1.0

A secondary goal is to thoroughly discuss the plots generated by STACIE, which can help detect
problems with the analysis or input data.

5.1.1 Library Imports and Matplotlib Configuration
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from stacie import (

compute_spectrum,
estimate_acint,
ExpPolyModel,
LorentzModel,
UnitConfig,
plot_extras,
plot_fitted_spectrum,

)

mpl.rc_file("matplotlibrc")
%config InlineBackend.figure_formats = ["svg"]

5.1.2 The Markov Process
We use the following simple discrete-time Markov process:

�̂�𝑛+1 = 𝛼�̂�𝑛 + 𝛽 ̂𝑧𝑛

where ̂𝑧𝑛 are uncorrelated standard normal random variables, and 𝛼 and 𝛽 are real constants. The
parameter 𝛼 controls the autocorrelation of the process, with 0 < 𝛼 < 1.
One can show that the autocorrelation function of this process is given by

𝑐Δ = 𝛽2

1 − 𝛼2 𝛼|Δ|

The variance, autocorrelation integral (with 𝐹 = 1 and ℎ = 1) and integrated correlation time are
respectively:

𝜎2 = 𝛽2

1 − 𝛼2

ℐ = 1
2 (

𝛽
1 − 𝛼)

2

𝜏int = ℐ
𝐹 𝑐0

= 1
2

1 + 𝛼
1 − 𝛼

Derivations of these equations can be found in the final section of this notebook.

The example below uses the parameters 𝛼 = 31/33 and 𝛽 = √8/1089, for which we expect ℐ = 1
and 𝜏int = 16.

5.1.3 Data generation
The following code cell implements 64 independent realizations of the Markov process of 32768
steps each. This implementation vectorizes over independent sequences, which is much faster
than generating them one by one.

50 Chapter 5. Worked Examples

https://en.wikipedia.org/wiki/Discrete-time_Markov_chain

STACIE, Release 1.0

nseq = 64
nstep = 1024 * 32
alpha = 31 / 33
beta = np.sqrt(8 / 1089)
std = beta / np.sqrt(1 - alpha**2)
rng = np.random.default_rng(0)
sequences = np.zeros((nseq, nstep))
sequences[:, 0] = rng.normal(0, std, nseq)
for i in range(1, nstep):

sequences[:, i] = alpha * sequences[:, i - 1] + rng.normal(0, beta, nseq)

5.1.4 Analysis With STACIE, Using the ExpPoly Model
The following code cell estimates the autocorrelation integral using the ExpPolyModel. Because the
autocorrelation decays exponentially, the spectrum features a Lorentzian peak at zero frequency.
Hence, we use degrees 𝑆 = {0, 2} for the polynomial, which ensures a zero-derivative at the
origin.

spectrum = compute_spectrum(sequences)
result_exppoly = estimate_acint(spectrum, ExpPolyModel([0, 2]), verbose=True)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut

--------- ---------- ----------
10.0 14.4 2.83e-04
10.6 14.4 3.01e-04
11.3 14.4 3.20e-04
12.0 14.4 3.41e-04
12.7 14.3 3.63e-04
13.5 14.2 3.86e-04
14.3 14.0 4.11e-04
15.2 13.7 4.38e-04
16.2 13.5 4.66e-04
17.2 13.3 4.96e-04
18.2 13.1 5.28e-04
19.4 13.1 5.62e-04
20.6 13.1 5.98e-04
21.9 13.3 6.37e-04
23.3 13.4 6.78e-04
24.8 13.5 7.21e-04
26.3 13.6 7.68e-04
28.0 13.5 8.18e-04
29.8 13.1 8.70e-04
31.6 12.5 9.26e-04
33.6 11.7 9.86e-04
35.8 11.0 1.05e-03
38.1 10.5 1.12e-03
40.5 10.1 1.19e-03
43.1 10.0 1.27e-03
45.8 10.0 1.35e-03
48.7 10.0 1.43e-03
51.8 10.0 1.53e-03
55.2 9.7 1.63e-03
58.7 9.3 1.73e-03

(continues on next page)

5.1. Minimal Example 51

STACIE, Release 1.0

(continued from previous page)

62.4 8.8 1.84e-03
66.4 8.3 1.96e-03
70.7 7.7 2.09e-03
75.2 7.3 2.22e-03
80.0 7.0 2.37e-03
85.1 6.9 2.52e-03
90.6 7.1 2.68e-03
96.4 7.3 2.85e-03

102.6 7.6 3.04e-03
109.2 7.7 3.23e-03
116.2 7.7 3.44e-03
123.7 7.5 3.66e-03
131.6 7.2 3.90e-03
140.1 7.0 4.15e-03
149.1 6.9 4.42e-03
158.6 6.9 4.70e-03
168.8 7.1 5.01e-03
179.7 7.4 5.33e-03
191.2 8.2 5.67e-03
203.6 9.7 6.04e-03
216.6 12.9 6.43e-03
230.6 19.2 6.84e-03
245.4 30.7 7.29e-03
261.2 50.9 7.76e-03
278.0 84.7 8.26e-03
295.9 140.3 8.79e-03

Cutoff criterion exceeds incumbent + margin: 6.9 + 100.0.

INPUT TIME SERIES
Time step: 1.00e+00
Simulation time: 3.28e+04
Maximum degrees of freedom: 128.0

MAIN RESULTS
Autocorrelation integral: 9.99e-01 ± 1.76e-02
Integrated correlation time: 1.59e+01 ± 2.80e-01

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 117.3 (ideally > 40)
Regression cost Z-score: -0.1 (ideally < 2)
Cutoff criterion Z-score: 0.3 (ideally < 2)

MODEL exppoly(0, 2) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 2
Average cutoff frequency: 3.47e-03

With the verbose=True option, STACIE prints the results of the analysis. The first section of the
screen output shows the progress of the cutoff frequency scan and includes the following columns:

• neff: the number of effective spectrum data points used in the fit.

• criterion: the value of the cutoff criterion used for the weighted average over solutions at
different cutoff frequencies.

• fcut: the cutoff frequency used for the fit.

52 Chapter 5. Worked Examples

STACIE, Release 1.0

The second section summarizes the analysis, and can be easily related to the concepts in the theory
section. These results already reveal that STACIE reproduces the expected results.

The next code cell plots the model fitted to the spectrum.

uc = UnitConfig()
plt.close("fitted_exppoly")
fig, ax = plt.subplots(num="fitted_exppoly")
plot_fitted_spectrum(ax, uc, result_exppoly)

This plot displays a lot of information:

• The spectrum is shown as blue dots.
• The fitted model is plotted as a solid green line. Its parameters are the weighted average
over multiple cutoff frequencies.

• The red dotted line shows the weighted average of the switching functions, used to identify
the low-frequency region of the spectrum.

• The green band shows the expected uncertainty of the sampling spectrum, as a 95% confi-
dence interval. Most of the blue data points should fall within this band, at least in the region
where the model is fitted to the data (red dotted line close to 1.0).

• The green dashed lines are the 95% confidence intervals of the fitted model. This confidence
interval should be narrow in the low-frequency region.

• The black vertical line corresponds to the weighted average of the cutoff frequencies used
in the fit.

• The plot title summarizes key information about the analysis, including:

– The model used to fit the data.

– The autocorrelation integral and its uncertainty.

– The integrated correlation time and its uncertainty.

• The legend shows to the confidence level used for plotting.

5.1. Minimal Example 53

STACIE, Release 1.0

The next plot shows some intermediate results, which can help you understand the fitting process
or detect problems.

plt.close("extras_exppoly")
fig, axs = plt.subplots(2, 2, num="extras_exppoly")
plot_extras(axs, uc, result_exppoly)

This plot contains four panels with extra results:

1. The top left panel shows the weight assigned to each cutoff frequency, based on the CV2L
criterion. Things to look for:

• If the cutoff weight is large for the lowest cutoffs, then the input sequences are likely
too short. This typically also results in a low number of effective data points. Increasing
the number of steps in the inputs will increase the frequency resolution of the spectrum,
allowing for better fits with lower cutoff frequencies.

• If the cutoff weight is large for the highest cutoffs, there is most likely also a problem
with the analysis. There can be multiple causes for this:

– The input sequences are much longer than necessary. In this case, you can increase
the neff_max option of estimate_acint() to fit the model with higher cutoffs. How-
ever, this can be expensive, so it is recommended to use more and shorter sequences
instead. This can be done by preprocessing the data with the split() function before
computing the spectrum. Even better is to plan ahead and avoid this situation.

– The data is block-averaged with a block size that is too large, which limits the avail-
able frequency range.

2. The top right panel shows the autocorrelation integral for each cutoff frequency. The dots
indicate the extent to which each point contributes to the final result. (Black is high weight,
white is low weight.) Things to look for:

• If the autocorrelation integral shows sharp jumps at low cutoff frequencies, the model is
most likely overfitting the data at low frequencies. These points are practically always
given low cutoff weights, so you can ignore them. However, if you want to exclude them
from the analysis, you can increase the neff_min option of estimate_acint().

54 Chapter 5. Worked Examples

STACIE, Release 1.0

3. The bottom left panel the Z-scores of the regression cost and the cutoff criterion, as a func-
tion of the cutoff frequency. The Z-score is the number of standard deviations a value de-
viates from its mean. For ill-behaved fits, the Z-scores easily exceed 2. When providing
sufficient inputs, high Z-scores should only occur where the cutoff weight is low. If the Z-
scores are high for cutoff frequencies with high cutoff weights, the input data is insufficient
for reliable error estimation or the model is not appropriate. In this case, it is recommended
to use a different model or to increase the length of the input sequences.

4. The bottom right panel shows the eigenvalues of the Hessian matrix of the fit, in a precondi-
tioned parameter space, at each cutoff frequency. A large spread of the eigenvalues indicates
that the fit is not well constrained. Such a large spread typically results in overfitting arti-
facts.

5.1.5 Analysis With STACIE, Using the Lorentz Model
In this example, we know a priori that the autocorrelation function decays exponentially. There-
fore, the LorentzModel should be able to perfectly explain the spectrum, up to the statistical noise
in the data.

Analysis
result_lorentz = estimate_acint(spectrum, LorentzModel(), verbose=True)

Plotting
plt.close("fitted_lorentz")
fig, ax = plt.subplots(num="fitted_lorentz")
plot_fitted_spectrum(ax, uc, result_lorentz)
plt.close("extras_lorentz")
fig, axs = plt.subplots(2, 2, num="extras_lorentz")
plot_extras(axs, uc, result_lorentz)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut

--------- ---------- ----------
15.0 inf 4.31e-04 (No correlation time estimate available.)
15.9 inf 4.59e-04 (No correlation time estimate available.)
16.9 inf 4.89e-04 (No correlation time estimate available.)
18.0 inf 5.20e-04 (No correlation time estimate available.)
19.1 inf 5.54e-04 (No correlation time estimate available.)
20.3 inf 5.89e-04 (Variance of the correlation time estimate is too large.)
21.6 inf 6.27e-04 (Variance of the correlation time estimate is too large.)
23.0 inf 6.68e-04 (Variance of the correlation time estimate is too large.)
24.4 inf 7.11e-04 (Variance of the correlation time estimate is too large.)
25.9 inf 7.57e-04 (Variance of the correlation time estimate is too large.)
27.6 inf 8.06e-04 (Variance of the correlation time estimate is too large.)
29.3 inf 8.58e-04 (Variance of the correlation time estimate is too large.)
31.2 inf 9.13e-04 (Variance of the correlation time estimate is too large.)
33.2 inf 9.72e-04 (Variance of the correlation time estimate is too large.)
35.3 inf 1.03e-03 (Variance of the correlation time estimate is too large.)
37.5 inf 1.10e-03 (Variance of the correlation time estimate is too large.)
39.9 inf 1.17e-03 (Variance of the correlation time estimate is too large.)
42.4 inf 1.25e-03 (Variance of the correlation time estimate is too large.)
45.1 inf 1.33e-03 (Variance of the correlation time estimate is too large.)
48.0 inf 1.41e-03 (Variance of the correlation time estimate is too large.)
51.1 inf 1.51e-03 (Variance of the correlation time estimate is too large.)
54.4 inf 1.60e-03 (opt: Hessian matrix has non-positive eigenvalues:␣

(continues on next page)

5.1. Minimal Example 55

STACIE, Release 1.0

(continued from previous page)

↪evals=array([-9.28856795e-05, 4.37431407e-01, 2.56266148e+00]))
57.8 inf 1.71e-03 (Variance of the correlation time estimate is too large.)
61.5 inf 1.82e-03 (Variance of the correlation time estimate is too large.)
65.5 inf 1.93e-03 (Variance of the correlation time estimate is too large.)
69.7 inf 2.06e-03 (Variance of the correlation time estimate is too large.)
74.1 inf 2.19e-03 (Variance of the correlation time estimate is too large.)
78.9 inf 2.33e-03 (Variance of the correlation time estimate is too large.)
83.9 inf 2.48e-03 (Variance of the correlation time estimate is too large.)
89.3 inf 2.64e-03 (Variance of the correlation time estimate is too large.)
95.0 inf 2.81e-03 (Variance of the correlation time estimate is too large.)

101.1 inf 2.99e-03 (Variance of the correlation time estimate is too large.)
107.6 inf 3.19e-03 (Variance of the correlation time estimate is too large.)
114.5 inf 3.39e-03 (Variance of the correlation time estimate is too large.)
121.9 inf 3.61e-03 (Variance of the correlation time estimate is too large.)
129.7 inf 3.84e-03 (Variance of the correlation time estimate is too large.)
138.0 inf 4.09e-03 (Variance of the correlation time estimate is too large.)
146.9 inf 4.36e-03 (Variance of the correlation time estimate is too large.)
156.3 inf 4.64e-03 (Variance of the correlation time estimate is too large.)
166.4 inf 4.94e-03 (Variance of the correlation time estimate is too large.)
177.1 inf 5.25e-03 (Variance of the correlation time estimate is too large.)
188.5 inf 5.59e-03 (Variance of the correlation time estimate is too large.)
200.6 inf 5.95e-03 (Variance of the correlation time estimate is too large.)
213.5 inf 6.34e-03 (Variance of the correlation time estimate is too large.)
227.2 inf 6.75e-03 (Variance of the correlation time estimate is too large.)
241.9 inf 7.18e-03 (Variance of the correlation time estimate is too large.)
257.4 11.7 7.64e-03
274.0 11.5 8.14e-03
291.6 11.3 8.66e-03
310.4 11.2 9.22e-03
330.4 11.0 9.81e-03
351.7 10.8 1.04e-02
374.3 10.6 1.11e-02
398.4 10.4 1.18e-02
424.1 10.2 1.26e-02
451.4 10.1 1.34e-02
480.5 9.9 1.43e-02
511.5 9.6 1.52e-02
544.4 9.4 1.62e-02
579.5 9.1 1.72e-02
616.9 8.9 1.83e-02
656.6 8.6 1.95e-02
698.9 8.5 2.08e-02
744.0 8.3 2.21e-02
791.9 8.1 2.35e-02
843.0 8.0 2.51e-02
897.3 7.8 2.67e-02
955.1 7.5 2.84e-02

1016.7 7.0 3.02e-02
Reached the maximum number of effective points (1000).

INPUT TIME SERIES
Time step: 1.00e+00
Simulation time: 3.28e+04
Maximum degrees of freedom: 128.0

(continues on next page)

56 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

MAIN RESULTS
Autocorrelation integral: 1.01e+00 ± 1.00e-02
Integrated correlation time: 1.60e+01 ± 1.59e-01

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 820.9 (ideally > 60)
Regression cost Z-score: 0.6 (ideally < 2)
Cutoff criterion Z-score: -0.1 (ideally < 2)

MODEL lorentz(0.1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 2.44e-02
Exponential correlation time: 1.59e+01 ± 2.80e-01

RECOMMENDED SIMULATION SETTINGS (EXPONENTIAL CORR. TIME)
Block time: 5.01e+00 ± 1.57e-01
Simulation time: 1.00e+03 ± 2.22e+00

5.1. Minimal Example 57

STACIE, Release 1.0

The extra plots reveal some noteworthy features:

• At the lowest cutoff frequencies, the model clearly overfits the data. There is a large spread
on the eigenvalues, and the autocorrelation integral fluctuates significantly for low cutoff
frequencies. Although the results at these cutoff frequencies are unreliable, they are given
low weights, so you don’t need to intervene manually to exclude these results.

• The cutoff weight is maximal for the highest cutoff frequencies. This is typically a sign that
the input sequences are too long, but this is not the case here. While the Lorentz model
would also yield excellent results with shorter sequences, this would still result in a high
frequency cutoff. This is because the Lorentz model fits the data perfectly; more data points
will always result in a lower cutoff criterion. However, in more realistic cases involving data
from complex simulations or measurements, this is unlikely to happen.

5.1.6 Regression Tests
If you are experimenting with this notebook, you can ignore any exceptions below. The tests are
only meant to pass for the notebook in its original form.

if abs(result_exppoly.acint - 1.0) > 0.03:
raise ValueError(f"Wrong acint: {result_exppoly.acint:.4e}")

if abs(result_exppoly.corrtime_int - 16.0) > 0.5:
raise ValueError(f"Wrong corrtime_int: {result_exppoly.corrtime_int:.4e}")

if abs(result_lorentz.acint - 1.0) > 0.03:
raise ValueError(f"Wrong acint: {result_lorentz.acint:.4e}")

if abs(result_lorentz.corrtime_int - 16.0) > 0.5:
raise ValueError(f"Wrong corrtime_int: {result_lorentz.corrtime_int:.4e}")

if abs(result_lorentz.corrtime_exp - 16.0) > 0.5:
raise ValueError(f"Wrong corrtime_exp: {result_lorentz.corrtime_exp:.4e}")

58 Chapter 5. Worked Examples

STACIE, Release 1.0

5.1.7 Derivation of the Autocorrelation Integral
The Markov process is defined by the following equation:

�̂�𝑛+1 = 𝛼�̂�𝑛 + 𝛽 ̂𝑧𝑛

The stationary distribution of the process is Gaussian with zero mean. The initial state is slowly
reduced by repetitive application of the factor 𝛼. The only part that remains after a long time is
the additive contributions from the normal noise ̂𝑧𝑛.

Since the two terms on the right-hand side of the equation are independent, the variance of the
stationary distribution can be found by solving:

𝑐0 = 𝛼2𝑐0 + 𝛽2

This gives:

𝑐0 = 𝛽2

1 − 𝛼2

The covariance of two neighboring points is given by:

COV[�̂�𝑛, �̂�𝑛+1] = 𝛼 COV[�̂�𝑛, �̂�𝑛] = 𝛼 𝑐0

This can easily be generalized to points separated by Δ > 0 steps through induction:

COV[�̂�𝑛, �̂�𝑛+Δ] = 𝛼 COV[�̂�𝑛, �̂�𝑛+Δ−1] = 𝛼Δ 𝑐0

with a similar result for Δ < 0. Combining these results gives:

𝑐Δ = 𝛽2

1 − 𝛼2 𝛼|Δ|

The autocorrelation integral is defined by a simple quadrature rule (with 𝐹 = 1 and ℎ = 1):

ℐ = 1
2

∞

∑
Δ=−∞

𝛽2

1 − 𝛼2 𝛼|Δ|

This can be rewritten easily using properties of geometric series. One must be careful not to
double-count the Δ = 0 term. This can be accomplished by isolating this term and rewriting the
remaining terms in the sum with a shifted index, 𝑛 = |Δ| − 1. After replacing the index, we use
∑∞

Δ=1 𝛼Δ = 𝛼 ∑∞
𝑛=0 𝛼𝑛.

ℐ = 𝛽2

(1 − 𝛼2) (
1
2 + 𝛼

∞

∑
𝑛=0

𝛼𝑛
)

= 𝛽2

(1 − 𝛼2) (
1
2 + 𝛼

1 − 𝛼)

= 𝛽2

(1 − 𝛼2) (
1 + 𝛼

2(1 − 𝛼))

= 1
2 (

𝛽
1 − 𝛼)

2

5.1. Minimal Example 59

STACIE, Release 1.0

5.2 Uncertainty of the Mean of Time-Correlated Data
This notebook shows how to use STACIE to compute the error of the mean of a time-correlated
input sequence, meaning not all of its values are statistically independent.

This is a completely self-contained example that generates input sequences (with MCMC) and
then analyzes them with STACIE. Atomic units are used unless otherwise noted.

We suggest experimenting with this notebook by making the following changes:

• Change the number of sequences and their length.

• Change the correlation time through PROPOSAL_STEP.

5.2.1 Library Imports and Matplotlib Configuration
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import quad
import scipy.constants as sc
from stacie import (

UnitConfig,
compute_spectrum,
estimate_acint,
LorentzModel,
plot_extras,
plot_fitted_spectrum,
plot_spectrum,

)

mpl.rc_file("matplotlibrc")
%config InlineBackend.figure_formats = ["svg"]

5.2.2 Data Generation
The data for the analysis are generated by sampling a Kratzer–Feus potential of a diatomic
molecule [Fue26, Kra20] at constant temperature. This potential is harmonic in 1/𝑟:

𝑈(𝑟) = 𝐾
2 (

𝑟2
0
𝑟 − 𝑟0)

2

where 𝐾 is the force constant and 𝑟0 the equilibrium bond length. The sampled probability density
is the Boltzmann distribution:

𝑝𝑟(𝑟) = 1
𝑍 exp (−𝑈(𝑟)

𝑘B𝑇)

where the normalization 𝑍 is the classical partition function.

In this example, the force constant and bond length of the lithium dimer are used, with parameters
from Zhao et al. [ZZF22] converted to atomic units. A high temperature is used to skew the
distribution to larger distances.

60 Chapter 5. Worked Examples

STACIE, Release 1.0

K = 0.015
R0 = 5.150
TEMPERATURE = 1000
BOLTZMANN = sc.value("Boltzmann constant") / sc.value("Hartree energy")
BETA = 1 / (BOLTZMANN * TEMPERATURE)
PROPOSAL_STEP = 0.1

def logprob(r):
"""Calculate the logarithm of the probability."""
energy = 0.5 * K * (R0**2 / r - R0) ** 2
return -BETA * energy

def plot_potential_dist():
plt.close("boltzmann")
_, (ax1, ax2) = plt.subplots(2, 1, num="boltzmann", sharex=True)
rgrid = np.linspace(0.5 * R0, 2 * R0, 100)
ax2.sharex(ax1)
ax1.plot(rgrid, -logprob(rgrid) / BETA)
ax1.set_ylabel(r"Potential energy [E$_\text{h}$]")
ax2.plot(rgrid, np.exp(logprob(rgrid)))
ax2.set_ylabel("Boltzmann factor\n(unnormalized probability density)")
ax2.set_xlabel("Internuclear distance [a$_0$]")

plot_potential_dist()

The MCMC implementation below is non-standard in the sense that it is vectorized to generate
multiple sequences in parallel.

5.2. Uncertainty of the Mean of Time-Correlated Data 61

STACIE, Release 1.0

def sample_mcmc_chain(niter, stride, ndim, burnin, seed=42):
"""Sample independent Markov Chains with the Metropolis algorithm.

Parameters

niter

The number of MCMC iterations to run.
stride

The number of iterations between samples returned,
i.e. the thinning interval.

ndim
The number of independent Markov chains to run.

burnin
The number of iterations to discard at the beginning.

seed
The random number generator seed.

Returns

result

A 2D array of shape (ndim, niter // stride) containing the sampled sequences.
"""
rng = np.random.default_rng(seed)
result = np.zeros((ndim, niter // stride))
r_old = np.full(ndim, R0)
lp_old = logprob(r_old)
irow = 0
istep = 0
while irow < result.shape[1]:

r_new = r_old + rng.normal(0, PROPOSAL_STEP, ndim)
lp_new = logprob(r_new)
accept = lp_new > lp_old
mask = ~accept
nrnd = mask.sum()
if nrnd > 0:

accept[mask] = rng.uniform(0, 1, nrnd) < np.exp(lp_new[mask] - lp_old[mask])
r_old[accept] = r_new[accept]
lp_old[accept] = lp_new[accept]
if burnin > 0:

burnin -= 1
continue

if istep % stride =) 0:
result[:, irow] = r_new
irow += 1

istep += 1
return result

sequences = sample_mcmc_chain(10240, 5, 50, 200)
print(f"(nseq, nstep) = {sequences.shape}")
mean_mc = sequences.mean()
print(f"Monte Carlo E[r] ≈ {mean_mc:.5f} > R0 = {R0:.5f}")

(nseq, nstep) = (50, 2048)
Monte Carlo E[r] ≈ 5.28666 > R0 = 5.15000

62 Chapter 5. Worked Examples

STACIE, Release 1.0

Because of the finite temperature and the anharmonicity of the potential, the average distance is
greater than the equilibrium bond length.

Plot the beginning of a few sequences.
The atomic unit of length is the Bohr radius, a_0.
def plot_chains():

plt.close("chains")
_, ax = plt.subplots(num="chains")
ax.plot(sequences[0][:500], label="Chain 1")
ax.plot(sequences[1][:500], label="Chain 2")
ax.plot(sequences[2][:500], label="Chain 3")
ax.set_xlabel("Step")
ax.set_ylabel(r"Bond length [a$_0$]")
ax.set_title("Markov Chain samples")
ax.legend()

plot_chains()

The sequences in the plot are clearly time-correlated. The following cells show how STACIE can
be used to compute the uncertainty of this average, taking into account that not all samples are
independent due to time correlations.

5.2.3 Uncertainty Quantification
The spectrum is calculated using settings that are appropriate for error estimation. See the Error
Estimates section for the justification of the prefactors and include_zero_freq keyword arguments.
Since we are analyzing MCMC data, the timestep argument is not specified, corresponding to a
dimensionless time step of 1.

Compute and plot the power spectrum.
spectrum = compute_spectrum(

(continues on next page)

5.2. Uncertainty of the Mean of Time-Correlated Data 63

STACIE, Release 1.0

(continued from previous page)

sequences,
prefactors=2.0 / sequences.size,
include_zero_freq=False,

)

The UnitConfig object contains settings that are reused by most plotting functions. The integral
has units of length squared, a2

0. (It is the variance of the mean.)

uc = UnitConfig(
time_fmt=".1f",
acint_fmt=".1e",
acint_unit_str=r"a2_0",

)
plt.close("spectrum")
_, ax = plt.subplots(num="spectrum")
plot_spectrum(ax, uc, spectrum, 180)

From the spectrum, one can already visually estimate the variance of the mean: the limit to zero
frequency is about 6 × 10−5 a2

0. By normalizing the spectrum with the total simulation time, the
spectrum has the correct unit of length squared. In the following cell, a model is fitted to the
spectrum to get a more precise estimate.

result = estimate_acint(spectrum, LorentzModel(), verbose=True, uc=uc)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut

--------- ---------- ----------
15.0 inf 7.38e-03 (Variance of the correlation time estimate is too large.)
16.0 inf 7.85e-03 (Variance of the correlation time estimate is too large.)
17.1 inf 8.36e-03 (Variance of the correlation time estimate is too large.)

(continues on next page)

64 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

18.2 inf 8.90e-03 (Variance of the correlation time estimate is too large.)
19.4 inf 9.47e-03 (Variance of the correlation time estimate is too large.)
20.7 inf 1.01e-02 (Variance of the correlation time estimate is too large.)
22.0 inf 1.07e-02 (Variance of the correlation time estimate is too large.)
23.5 inf 1.14e-02 (Variance of the correlation time estimate is too large.)
25.0 inf 1.22e-02 (Variance of the correlation time estimate is too large.)
26.7 inf 1.29e-02 (Variance of the correlation time estimate is too large.)
28.4 inf 1.38e-02 (Variance of the correlation time estimate is too large.)
30.3 inf 1.47e-02 (Variance of the correlation time estimate is too large.)
32.3 inf 1.56e-02 (Variance of the correlation time estimate is too large.)
34.4 inf 1.66e-02 (Variance of the correlation time estimate is too large.)
36.7 inf 1.77e-02 (Variance of the correlation time estimate is too large.)
39.1 -4.8 1.88e-02
41.6 -5.1 2.00e-02
44.3 -5.5 2.13e-02
47.2 -6.0 2.27e-02
50.3 -6.6 2.42e-02
53.6 -7.1 2.57e-02
57.1 -7.4 2.74e-02
60.8 -7.7 2.92e-02
64.7 -7.9 3.11e-02
68.9 -8.0 3.31e-02
73.4 -8.1 3.52e-02
78.2 -8.2 3.75e-02
83.3 -8.3 3.99e-02
88.7 -8.3 4.24e-02
94.4 -8.3 4.52e-02

100.5 -8.3 4.81e-02
107.1 -8.4 5.12e-02
114.0 -8.6 5.45e-02
121.4 -8.7 5.80e-02
129.2 -8.8 6.18e-02
137.6 -8.9 6.57e-02
146.5 -8.8 7.00e-02
156.0 -8.7 7.45e-02
166.1 -8.5 7.93e-02
176.8 -8.3 8.44e-02
188.3 -8.0 8.98e-02
200.4 -7.9 9.56e-02
213.4 -7.9 1.02e-01
227.2 -8.0 1.08e-01
241.9 -8.2 1.15e-01
257.5 -8.4 1.23e-01
274.2 -8.5 1.31e-01
291.9 -8.5 1.39e-01
310.7 -8.5 1.48e-01
330.8 -8.3 1.58e-01
352.2 -8.2 1.68e-01
374.9 inf 1.79e-01 (cv2l: Insufficient data after cutoff.)

Scan stopped by cutoff criterion.

INPUT TIME SERIES
Time step: 1.0
Simulation time: 2048.0

(continues on next page)

5.2. Uncertainty of the Mean of Time-Correlated Data 65

STACIE, Release 1.0

(continued from previous page)

Maximum degrees of freedom: 100.0

MAIN RESULTS
Autocorrelation integral: 6.3e-05 ± 2.5e-06 a2_0
Integrated correlation time: 12.3 ± 0.5

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 164.8 (ideally > 60)
Regression cost Z-score: -0.1 (ideally < 2)
Cutoff criterion Z-score: 1.0 (ideally < 2)

MODEL lorentz(0.1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 7.87e-02
Exponential correlation time: 12.6 ± 0.6

RECOMMENDED SIMULATION SETTINGS (EXPONENTIAL CORR. TIME)
Block time: 4.0 ± 0.3
Simulation time: 790.4 ± 4.5

The spectrum is normalized such that the integral of the autocorrelation function is equal to the
variance of the mean. Because STACIE estimates errors of the autocorrelation integral, it can thus
also estimate errors of errors of means.

The error of the mean and its uncertainty are printed in the following cell.

error_mc = np.sqrt(result.acint)
print(f"Error of the mean = {error_mc:.5f}")
error_of_error_mc = 0.5 * result.acint_std / error_mc
print(f"Uncertainty of the error of the mean = {error_of_error_mc:.5f}")

Error of the mean = 0.00793
Uncertainty of the error of the mean = 0.00016

It is also interesting to visualize the fitted spectrum and some intermediate results.

Plot of the sampling and fitted model spectrum.
plt.close("fitted")
_, ax = plt.subplots(num="fitted")
plot_fitted_spectrum(ax, uc, result)

66 Chapter 5. Worked Examples

STACIE, Release 1.0

The Lorentz model can clearly explain the spectrum, even well beyond the width of the peak at
zero frequency.

Plot additional intermediate results as a function of the frequency cutoff.
plt.close("extras")
_, axs = plt.subplots(2, 2, num="extras")
plot_extras(axs, uc, result)

The extra plots reveal several interesting challenges of the analysis:

• The cutoff weight (top left panel) remains high up to the highest cutoff frequency considered.

5.2. Uncertainty of the Mean of Time-Correlated Data 67

STACIE, Release 1.0

If one is only interested in the zero-frequency limit of the spectrum, there is little to be gained
by including many data points in the fit at high frequencies, well past the width of the peak
at zero frequency. These will not make the autocorrelation integral more precise, but bear
the risk of introducing some bias due to underfitting. One maymanually impose a maximum
frequency cutoff with the fcut_max argument of the estimate_acint() function.

• The risk for some bias at high cutoff frequencies is also visible in the Z-score associated with
the cutoff criterion (green curve in the lower left panel). For higher cutoff frequencies, the
Z-score slowly increases to values above 2, where the cutoff weight is still significant.

The reason for the higher Z-score is that the input time series is not normally distributed,
due to the asymmetry of the Kratzer–Fues potential. As a result, the MC chain cannot be
described by a Gaussian process, and the uncertainty of the spectrum amplitudes is not ex-
actly Gamma-distributed. You can verify this hypothesis by rerunning this example with
TEMPERATURE = 100 and PROPOSAL_STEP = 0.03. This will result in a more symmetric distribution
of bond lengths. By lowering the proposal step, the correlation time remains about the same.
With these settings, a lower criterion Z-score is obtained at high cutoff frequencies.

5.2.4 Precise Mean With Numerical Quadrature
Because the probability density sampled by the MC chain is one-dimensional, it is feasible to com-
pute the mean using numerical quadrature, which is much more accurate than the Monte Carlo
estimate. (For production simulations, Monte Carlo is only advantageous for high-dimensional
problems.)

As shown in the code below, the difference between the quadrature and Monte Carlo estimates is
on the order of the estimated uncertainty of the MC result.

numer_quad = quad(lambda r: r * np.exp(logprob(r)), 0, 50)[0]
denom_quad = quad(lambda r: np.exp(logprob(r)), 0, 50)[0]
mean_quad = numer_quad / denom_quad
print(f"Quadrature E[r] ≈ {mean_quad:8.5f}")
print(f"Monte Carlo E[r] ≈ {mean_mc:8.5f}")
print(f"|Difference| = {abs(mean_quad - mean_mc):8.5f}")
print(f"Estimated MC error = {error_mc:8.5f}")

Quadrature E[r] ≈ 5.28043
Monte Carlo E[r] ≈ 5.28666
|Difference| = 0.00623
Estimated MC error = 0.00793

5.2.5 Autocorrelation time
The Lorentz model estimates the exponential correlation time [Sok97] from the width of the peak
at zero frequency in the spectrum. It may differ from the integrated autocorrelation time. Only
if the autocorrelation function is nothing but an exponentially decaying function, both should
match.

print("Autocorrelation times:")
print(f"exponential: {result.corrtime_exp:5.2f} ± {result.corrtime_exp_std:5.2f}")
print(f"integrated: {result.corrtime_int:5.2f} ± {result.corrtime_int_std:5.2f}")

Autocorrelation times:
exponential: 12.58 ± 0.57
integrated: 12.28 ± 0.49

68 Chapter 5. Worked Examples

STACIE, Release 1.0

Here, the deviation between the two autocorrelation times falls within the uncertainty of the
estimates. This is the expected result, since the Lorentzian model is able to explain the whole
spectrum.

5.2.6 Regression Tests
If you are experimenting with this notebook, you can ignore any exceptions below. The tests are
only meant to pass for the notebook in its original form.

if abs(mean_mc - 5.28666) > 1e-3:
raise ValueError(f"Wrong mean_mc: {mean_mc:.5f}")

if abs(error_mc - 0.00794) > 1e-3:
raise ValueError(f"Wrong error_mc: {error_mc:.5f}")

5.3 Applicability of the Lorentz Model
STACIE’s Lorentz model assumes that the autocorrelation function decays exponentially for large
lag times. Not all dynamical systems exhibit this exponential relaxation. If you want to apply
STACIE to systems without exponential relaxation, you can use the exppoly model instead.
To illustrate the applicability of the Lorentz model, this notebook applies STACIE to numerical
solutions of Thomas’ Cyclically Symmetric Attractor:

d𝑥
d𝑡 = sin(𝑦) − 𝑏𝑥
d𝑦
d𝑡 = sin(𝑧) − 𝑏𝑦
d𝑧
d𝑡 = sin(𝑥) − 𝑏𝑧

For 𝑏 < 0.208186, this system has chaotic solutions. As a result, the system looses memory of its
initial conditions rather quickly, and the autocorrelation function tends to decay exponentially. At
the boundary, 𝑏 = 0.208186, the exponential decay is no longer valid and the spectrum deviates
from the Lorentzian shape. In practice, the Lorentz model is applicable for smaller values, 0 <
𝑏 < 0.17.
For 𝑏 = 0, the solutions become random walks with anomalous diffusion [RS08]. In this case, it
makes more sense to work with the spectrum of the time derivative of the solutions. However,
due to the anomalous diffusion, the spectrum of these derivatives cannot be approximated well
with the Lorentz model.

This example is fully self-contained: input data is generated with numerical integration and then
analyzed with STACIE. Dimensionless units are used throughout.

We suggest you experiment with this notebook by changing the 𝑏 parameter and replacing the
Lorentz model with the ExpPoly model.

5.3.1 Library Imports and Matplotlib Configuration
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from numpy.typing import ArrayLike, NDArray
from stacie import (

(continues on next page)

5.3. Applicability of the Lorentz Model 69

https://en.wikipedia.org/wiki/Thomas%27_cyclically_symmetric_attractor

STACIE, Release 1.0

(continued from previous page)

UnitConfig,
compute_spectrum,
estimate_acint,
LorentzModel,
plot_extras,
plot_fitted_spectrum,
plot_spectrum,

)

mpl.rc_file("matplotlibrc")
%config InlineBackend.figure_formats = ["svg"]

5.3.2 Data Generation
The following cell implements the numerical integration of the oscillator using Ralston’s method
for 100 different initial configurations. The parameter 𝑏 is given as an argument to the generate()
function at the last line of the next cell.

NSYS = 100
NDIM = 3
NSTEP = 20000
TIMESTEP = 0.3

def time_derivatives(state: ArrayLike, b: float) -> NDArray:
"""Compute the time derivatives defining the differential equations."""
return np.sin(np.roll(state, 1, axis=1)) - b * state

def integrate(state: ArrayLike, nstep: int, h: float, b: float) -> NDArray:
"""Integrate the System with Ralston's method, using a fixed time step h.

Parameters

state

The initial state of the system, shape `(ndim, nsys)`,
where `ndim` is the number of dimensions and `nsys` systems to integrate in parallel.

nstep
The number of time steps to integrate.

h
The time step size.

b
The parameter b in the differential equations.

Returns

trajectory

The trajectory of the system, shape `(nstep, ndim, nsys)`.
The first dimension is the time step, the second dimension is the state variable,
and the third dimension is the system index.

"""
trajectory = np.zeros((nstep, *state.shape))
for istep in range(nstep):

(continues on next page)

70 Chapter 5. Worked Examples

https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods#Ralston's_method

STACIE, Release 1.0

(continued from previous page)

k1 = time_derivatives(state, b)
k2 = time_derivatives(state + (2 * h / 3) * k1, b)
state += h * (k1 + 3 * k2) / 4
trajectory[istep] = state

return trajectory

def generate(b: float):
"""Generate solutions for random initial states."""
rng = np.random.default_rng(42)
x = rng.uniform(-2, 2, (NDIM, NSYS))
return integrate(x, NSTEP, TIMESTEP, b)

trajectory = generate(b=0.1)

The solutions shown below are smooth, but for low enough values of 𝑏, they are pseudo-random
over longer time scales.

def plot_traj(nplot=500):
"""Show the first 500 steps of the first 10 solutions."""
plt.close("traj")
_, ax = plt.subplots(num="traj")
times = np.arange(nplot) * TIMESTEP
ax.plot(times, trajectory[:nplot, 0, 0], label="$x(t)$")
ax.plot(times, trajectory[:nplot, 1, 0], label="$y(t)$")
ax.plot(times, trajectory[:nplot, 2, 0], label="$z(t)$")
ax.set_xlabel("Time")
ax.set_ylabel("Position")
ax.set_title(f"Example solutions (first {nplot} steps)")
ax.legend()

plot_traj()

5.3. Applicability of the Lorentz Model 71

STACIE, Release 1.0

5.3.3 Spectrum
In the chaotic regime, the low-frequency spectrum indicates diffusive motion: a large peak at the
origin. The spectrum is normalized so that the autocorrelation integral becomes the variance of
the mean.

uc = UnitConfig(acint_fmt=".2e")
sequences = trajectory[:, 0, :].T # use x(t) only
spectrum = compute_spectrum(

sequences,
timestep=TIMESTEP,
prefactors=2.0 / (NSTEP * TIMESTEP * NSYS),
include_zero_freq=False,

)
plt.close("spectrum")
_, ax = plt.subplots(num="spectrum")
plot_spectrum(ax, uc, spectrum, nplot=500)

72 Chapter 5. Worked Examples

STACIE, Release 1.0

Note that we only use component 0, i.e. 𝑥(𝑡), of each system as input for the spectra. This ensures
that fully independent sequences are used in the analysis below, which is assumed by the statistical
model of the spectrum used by STACIE.

5.3.4 Error of the Mean
The following cells fit the Lorentz model to the spectrum to derive the variance of the mean.

result = estimate_acint(spectrum, LorentzModel(), verbose=True)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut

--------- ---------- ----------
15.0 inf 2.52e-03 (Variance of the correlation time estimate is too large.)
16.0 inf 2.68e-03 (Variance of the correlation time estimate is too large.)
17.1 inf 2.85e-03 (Variance of the correlation time estimate is too large.)
18.2 inf 3.04e-03 (Variance of the correlation time estimate is too large.)
19.4 inf 3.23e-03 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-2.13212330e-04, 4.27724835e-01, 2.57248838e+00]))
20.7 inf 3.44e-03 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-3.42858708e-04, 4.26401259e-01, 2.57394160e+00]))
22.0 inf 3.66e-03 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-6.28787951e-04, 4.25285484e-01, 2.57534330e+00]))
23.5 inf 3.90e-03 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-7.74018437e-04, 4.23479196e-01, 2.57729482e+00]))
25.0 inf 4.15e-03 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-9.36617560e-04, 4.22060298e-01, 2.57887632e+00]))
26.7 inf 4.42e-03 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-6.89294195e-04, 4.19968631e-01, 2.58072066e+00]))
28.4 inf 4.70e-03 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-8.22895236e-05, 4.18498803e-01, 2.58158349e+00]))
30.3 inf 5.01e-03 (Variance of the correlation time estimate is too large.)

(continues on next page)

5.3. Applicability of the Lorentz Model 73

STACIE, Release 1.0

(continued from previous page)

32.3 inf 5.33e-03 (Variance of the correlation time estimate is too large.)
34.4 inf 5.67e-03 (Variance of the correlation time estimate is too large.)
36.7 inf 6.04e-03 (Variance of the correlation time estimate is too large.)
39.1 inf 6.43e-03 (Variance of the correlation time estimate is too large.)
41.6 inf 6.84e-03 (Variance of the correlation time estimate is too large.)
44.3 inf 7.28e-03 (Variance of the correlation time estimate is too large.)
47.2 inf 7.75e-03 (Variance of the correlation time estimate is too large.)
50.3 inf 8.25e-03 (Variance of the correlation time estimate is too large.)
53.6 inf 8.79e-03 (Variance of the correlation time estimate is too large.)
57.1 inf 9.35e-03 (Variance of the correlation time estimate is too large.)
60.8 inf 9.96e-03 (Variance of the correlation time estimate is too large.)
64.7 inf 1.06e-02 (Variance of the correlation time estimate is too large.)
68.9 inf 1.13e-02 (Variance of the correlation time estimate is too large.)
73.4 inf 1.20e-02 (Variance of the correlation time estimate is too large.)
78.2 inf 1.28e-02 (Variance of the correlation time estimate is too large.)
83.3 inf 1.36e-02 (Variance of the correlation time estimate is too large.)
88.7 -6.7 1.45e-02
94.4 -6.4 1.54e-02

100.5 -4.8 1.64e-02
107.1 -2.1 1.75e-02
114.0 0.4 1.86e-02
121.4 1.7 1.98e-02
129.2 1.4 2.11e-02
137.6 0.5 2.24e-02
146.5 -0.1 2.39e-02
156.0 -0.5 2.54e-02
166.1 -1.1 2.71e-02
176.8 -2.1 2.88e-02
188.3 -2.9 3.07e-02
200.4 -2.7 3.26e-02
213.4 -1.1 3.48e-02
227.2 1.6 3.70e-02
241.9 4.9 3.94e-02
257.5 7.7 4.19e-02
274.2 9.3 4.46e-02
291.9 9.4 4.75e-02
310.7 8.7 5.06e-02
330.8 7.8 5.38e-02
352.2 7.0 5.73e-02
374.9 5.6 6.10e-02
399.1 2.8 6.49e-02
424.9 inf 6.91e-02 (cv2l: Linear dependencies in basis. evals=array([1.

↪83362182e-07, 2.82393010e-01, 2.71760681e+00]))
452.3 inf 7.36e-02 (cv2l: Linear dependencies in basis. evals=array([9.

↪49923181e-07, 2.36034488e-01, 2.76396456e+00]))
481.5 inf 7.83e-02 (cv2l: Linear dependencies in basis. evals=array([1.

↪47629017e-07, 1.81704351e-01, 2.81829550e+00]))
512.6 139.5 8.34e-02

Cutoff criterion exceeds incumbent + margin: -6.7 + 100.0.

INPUT TIME SERIES
Time step: 3.00e-01
Simulation time: 6.00e+03
Maximum degrees of freedom: 200.0

(continues on next page)

74 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

MAIN RESULTS
Autocorrelation integral: 2.48e-04 ± 4.71e-06
Integrated correlation time: 1.02e+01 ± 1.95e-01

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 95.1 (ideally > 60)
Regression cost Z-score: 1.1 (ideally < 2)
Cutoff criterion Z-score: -0.5 (ideally < 2)

MODEL lorentz(0.1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 1.55e-02
Exponential correlation time: 1.04e+01 ± 8.84e-01

RECOMMENDED SIMULATION SETTINGS (EXPONENTIAL CORR. TIME)
Block time: 3.27e+00 ± 4.95e-01
Simulation time: 6.54e+02 ± 7.01e+00

Due to the symmetry of the oscillator, the mean of the solutions should be zero. Within the
uncertainty, this is indeed the case for the numerical solutions, as shown below.

mean = sequences.mean()
print(f"Mean: {mean:.3e}")
error_mean = np.sqrt(result.acint)
print(f"Error of the mean: {error_mean:.3e}")

Mean: 1.303e-02
Error of the mean: 1.574e-02

For sufficiently small values of 𝑏, the autocorrelation function decays exponentially, so that the
two autocorrelation times are very similar:

print(f"corrtime_exp = {result.corrtime_exp:.3f} ± {result.corrtime_exp_std:.3f}")
print(f"corrtime_int = {result.corrtime_int:.3f} ± {result.corrtime_int_std:.3f}")

corrtime_exp = 10.408 ± 0.884
corrtime_int = 10.234 ± 0.195

To further gauge the applicability of the Lorentz model, it is useful to plot the fitted spectrum and
the intermediate results as a function of the cutoff frequency, as shown below.

plt.close("fitted")
fig, ax = plt.subplots(num="fitted")
plot_fitted_spectrum(ax, uc, result)
plt.close("extras")
fig, axs = plt.subplots(2, 2, num="extras")
plot_extras(axs, uc, result)

5.3. Applicability of the Lorentz Model 75

STACIE, Release 1.0

It is clear that at higher cutoff frequencies, which are given a negligible weight, the spectrum de-
viates from the Lorentzian shape. Hence, at shorter time scales, the autocorrelation function does
not decay exponentially. This was to be expected, as the input sequences are smooth functions.
To further confirm this, we recommend rerunning this notebook with different values of 𝑏:

• For lower value, such as 𝑏 = 0.05, the Lorentz model will fit the spectrum better, which is
reflected in lower Z-score values.

• Up to 𝑏 = 0.17, the Lorentz model is still applicable, but the Z-scores will increase.

• For 𝑏 = 0.2, the Lorentz model will not be able to assign an exponential correlation time. To

76 Chapter 5. Worked Examples

STACIE, Release 1.0

be able to run the notebook until the last plot, you need to comment out the line that prints
the exponential correlation time.

5.3.5 Regression Tests
If you are experimenting with this notebook, you can ignore any exceptions below. The tests are
only meant to pass for the notebook in its original form.

if abs(result.acint - 2.47e-4) > 2e-5:
raise ValueError(f"Wrong acint: {result.acint:.4e}")

if abs(result.corrtime_exp - 10.408) > 1e-1:
raise ValueError(f"Wrong corrtime_exp: {result.corrtime_exp:.4e}")

5.4 Diffusion on a Surface with Newtonian Dynamics
This example shows how to compute the diffusion coefficient of a particle adsorbed on a crystal
surface. For simplicity, the motion of the adsorbed particle is described by Newton’s equations
(without thermostat), i.e. in the NVE ensemble, and the particle can only move in two dimensions.

This is a completely self-contained example that generates the input sequences (with numerical
integration) and then analyzes them with STACIE. Unless otherwise noted, atomic units are used.

5.4.1 Library Imports and Matplotlib Configuration
import attrs
import matplotlib as mpl
import matplotlib.pyplot as plt
import numdifftools as nd
import numpy as np
import scipy.constants as sc
from numpy.typing import ArrayLike, NDArray
from stacie import (

UnitConfig,
compute_spectrum,
estimate_acint,
LorentzModel,
plot_extras,
plot_fitted_spectrum,

)

mpl.rc_file("matplotlibrc")
%config InlineBackend.figure_formats = ["svg"]

5.4.2 Data Generation
Potential energy surface

The first cell below defines the potential energy of a particle on a surface, as well as the force
that the surface exerts on the particle. The potential energy model is a superposition of cosine
functions:

𝑈(𝐫) = −𝐴
𝑁

∑
𝑛=1

cos(2𝜋𝐫 ⋅ 𝐞𝑛/𝜆)

5.4. Diffusion on a Surface with Newtonian Dynamics 77

STACIE, Release 1.0

with

𝐞𝑛 = 𝐞𝑥 cos(𝑛𝛼) + 𝐞𝑦 sin(𝑛𝛼)

The default settings for this notebook result in a hexagonal lattice: 𝐴 = 0.2 eV, 𝜆 = 5 a0, 𝑁 = 3,
and 𝛼 = 2𝜋/3. One may change these parameters to construct different types of surfaces:

• A square lattice: 𝑁 = 2 and 𝛼 = 𝜋/2.
• A quasi-periodic pentagonal lattice: 𝑁 = 5 and 𝛼 = 2𝜋/5.

The rest of the notebook is set up to work well with the default parameters. If you change the
potential energy model, remaining settings will also need to be adapted.

WAVELENGTH = 5.0
ALPHA = 2 * np.pi / 3
ANGLES = np.arange(3) * ALPHA
EV = sc.value("electron volt") / sc.value("atomic unit of energy")
AMPLITUDE = 0.2 * EV

def potential_energy_force(coords: ArrayLike) -> tuple[NDArray, NDArray]:
"""Compute the potential energies for given particle positions.

Parameters

coords

A NumPy array with one or more particle positions.
The last dimension is assumed to have size two.
Index 0 and 1 of the last axis correspond to x and y coordinates,
respectively.

Returns

energy

The potential energies for the given particle positions.
An array with shape `pos.shape[:-1]`.

force
The forces acting on the particles.
Same shape as `pos`, with same index conventions.

"""
coords = np.asarray(coords, dtype=float)
x = coords[..., 0]
y = coords[..., 1]
energy = 0
force = np.zeros(coords.shape)
wavenum = 2 * np.pi / WAVELENGTH
for angle in ANGLES:

arg = (x * np.cos(angle) + y * np.sin(angle)) * wavenum
energy -= np.cos(arg)
sin_wave = np.sin(arg) * wavenum
force[..., 0] -= sin_wave * np.cos(angle)
force[..., 1] -= sin_wave * np.sin(angle)

return AMPLITUDE * energy, AMPLITUDE * force

The following code cell provides a quick visual test of the forces using numdifftools. (The force
is equal to minus the energy gradient.)

78 Chapter 5. Worked Examples

https://github.com/pbrod/numdifftools

STACIE, Release 1.0

print(potential_energy_force([1, 2]))
print(nd.Gradient(lambda coords: potential_energy_force(coords)[0])([1, 2]))

(np.float64(0.004500133964627546), array([-0.00569293, -0.01063935]))
[0.00569293 0.01063935]

Finally, the following code cell plots the potential energy surface.

def plot_pes():
plt.close("pes")
fig, ax = plt.subplots(num="pes")
xs = np.linspace(-30, 30, 201)
ys = np.linspace(-20, 20, 201)
coords = np.array(np.meshgrid(xs, ys)).transpose(1, 2, 0)
energies = potential_energy_force(coords)[0]
cf = ax.contourf(xs, ys, energies / EV, levels=20)
ax.set_aspect("equal", "box")
ax.set_xlabel("x [a$_0$]")
ax.set_ylabel("y [a$_0$]")
ax.set_title("Potential Energy Surface")
fig.colorbar(cf, ax=ax, label="Energy [eV]")

plot_pes()

Newtonian Dynamics

The following code cell implements a vectorized Velocity Verlet integrator, which can integrate
multiple independent trajectories at the same time. Some parameters, like mass and time step
are fixed as global constants. The mass is that of an Argon atom converted to atomic units. The

5.4. Diffusion on a Surface with Newtonian Dynamics 79

https://en.wikipedia.org/wiki/Verlet_integration#Velocity_Verlet

STACIE, Release 1.0

timestep is five femtosecond converted to atomic units.

MASS = sc.value("unified atomic mass unit") * 39.948 / sc.value("atomic unit of mass")
FEMTOSECOND = 1e-15 / sc.value("atomic unit of time")
PICOSECOND = 1e-12 / sc.value("atomic unit of time")
TERAHERTZ = 1e12 * sc.value("atomic unit of time")
TIMESTEP = 5 * FEMTOSECOND

@attrs.define
class Trajectory:

"""Bundle dynamics trajectory results.

The first axis of all array attributes corresponds to time steps.
"""

timestep: float = attrs.field()
"""The spacing between two recorded time steps."""

coords: NDArray = attrs.field()
"""The time-dependent particle positions."""

vels: NDArray = attrs.field()
"""The time-dependent particle velocities.

If block_size is larger than 1,
this attribute contains the block-averaged velocity.
"""

potential_energies: NDArray = attrs.field()
"""The time-dependent potential energies."""

kinetic_energies: NDArray = attrs.field()
"""The time-dependent potential energies."""

@classmethod
def empty(cls, shape: tuple[int, ...], nstep: int, timestep: float):

"""Construct an empty trajectory object."""
return cls(

timestep,
np.zeros((nstep, *shape, 2)),
np.zeros((nstep, *shape, 2)),
np.zeros((nstep, *shape)),
np.zeros((nstep, *shape)),

)

@property
def nstep(self) -> int:

"""The number of time steps."""
return self.coords.shape[0]

def integrate(coords: ArrayLike, vels: ArrayLike, nstep: int, block_size: int = 1):
"""Integrate Newton's equation of motion for the given initial conditions.

(continues on next page)

80 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

Parameters

coords

The initial particle positions.
Index 0 and 1 of the last axis correspond to x and y coordinates.

vels
The initial particle velocities.
Index 0 and 1 of the last axis correspond to x and y coordinates.

nstep
The number of MD time steps.

block_size
The block_size with which to record the trajectory data.

Returns

trajectory

A Trajectory object holding all the results.
"""
traj = Trajectory.empty(coords.shape[:-1], nstep // block_size, TIMESTEP * block_size)
energies, forces = potential_energy_force(coords)
delta_vels = forces * (0.5 * TIMESTEP / MASS)

vels_block = 0
for istep in range(traj.nstep * block_size):

vels += delta_vels
coords += vels * TIMESTEP
energies, forces = potential_energy_force(coords)
delta_vels = forces * (0.5 * TIMESTEP / MASS)
vels += delta_vels
vels_block += vels
if istep % block_size =) block_size - 1:

itraj = istep // block_size
traj.coords[itraj] = coords
traj.vels[itraj] = vels_block / block_size
traj.potential_energies[itraj] = energies
traj.kinetic_energies[itraj] = (0.5 * MASS) * (vels**2).sum(axis=-1)
vels_block = 0

return traj

As a quick test, the following code cell integrates the equations of motion for a single particle with
a small initial velocity. In this case, the particle oscillates around the origin and one can easily
verify that the total energy is conserved.

def demo_energy_conservation():
"""Simple demo of the approximate energy conservation.

The initial velocity is small enough
to let the particle vibrate around the origin.
"""
nstep = 100
traj = integrate(np.zeros(2), np.full(2, 1e-4), nstep)
plt.close("energy")
_, ax = plt.subplots(num="energy")
times = np.arange(traj.nstep) * traj.timestep

(continues on next page)

5.4. Diffusion on a Surface with Newtonian Dynamics 81

STACIE, Release 1.0

(continued from previous page)

ax.plot(times, traj.potential_energies, label="potential")
ax.plot(times, traj.potential_energies + traj.kinetic_energies, label="total")
ax.set_title("Energy Conservation Demo")
ax.set_xlabel("Time [a.u. of time]")
ax.set_ylabel(r"Energy [E$_\mathrm{h}$]")
ax.legend()

demo_energy_conservation()

Demonstration of Deterministic Choas

Newtonian dynamics is deterministic, but has chaotic solutions for many systems. The parti-
cle on a surface in this notebook is no exception. The following cell shows two trajectories for
nearly identical initial conditions, but they slowly drift apart over time. After sufficient time, any
information about their nearly identical initial conditions is lost.

def demo_chaos():
vels = np.array([[1e-3, 1e-4], [1.000001e-3, 1e-4]])
traj = integrate(np.zeros((2, 2)), vels, 1500)
plt.close("chaos")
_, ax = plt.subplots(num="chaos")
ax.plot([0], [0], "o", color="k", label="Initial position")
ax.plot(traj.coords[:, 0, 0], traj.coords[:, 0, 1], color="C1", label="Trajectory 1")
ax.plot(

traj.coords[:, 1, 0],
traj.coords[:, 1, 1],
color="C3",
ls=":",
label="Trajectory 2",

(continues on next page)

82 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

)
ax.set_aspect("equal", "box")
ax.set_xlabel("x [a$_0$]")
ax.set_ylabel("y [a$_0$]")
ax.legend()
ax.set_title("Two Trajectories")

plt.close("chaos_dist")
_, ax = plt.subplots(num="chaos_dist")
times = np.arange(traj.nstep) * traj.timestep
ax.semilogy(times, np.linalg.norm(traj.coords[:, 0] - traj.coords[:, 1], axis=-1))
ax.set_xlabel("Time [a.u. of time]")
ax.set_ylabel("Interparticle distance [a$_0$]")
ax.set_title("Slow Separation")

demo_chaos()

5.4. Diffusion on a Surface with Newtonian Dynamics 83

STACIE, Release 1.0

Because the trajectories are chaotic, the short term motion is ballistic, while the long term motion
is a random walk.

Note that the random walk is only found in a specific energy window. If the energy is too small,
the particles will oscillate around a local potential energy minimum. If the energy is too large, or
just high enough to cross barriers, the particles will follow almost linear paths over the surface.

5.4.3 Surface diffusion without block averages
This section considers 100 independent particles whose initial velocities have the samemagnitude
but whose directions are random. The time-dependent particle velocities are used as inputs for
STACIE to compute the diffusion coefficient.

def demo_stacie(block_size: int = 1):
"""Simulate particles on a surface and compute the diffusion coefficient.

Parameters

block_size

The block size for the block averages.
If 1, no block averages are used.

Returns

result

The result of the STACIE analysis.
"""
natom = 100
nstep = 20000
rng = np.random.default_rng(42)
vels = rng.normal(0, 1, (natom, 2))
vels *= 9.7e-4 / np.linalg.norm(vels, axis=1).reshape(-1, 1)

(continues on next page)

84 Chapter 5. Worked Examples

https://en.wikipedia.org/wiki/Chaos_theory

STACIE, Release 1.0

(continued from previous page)

traj = integrate(np.zeros((natom, 2)), vels, nstep, block_size)

plt.close(f"trajs_{block_size}")
, ax = plt.subplots(num=f"trajs{block_size}", figsize=(6, 6))
for i in range(natom):

ax.plot(traj.coords[:, i, 0], traj.coords[:, i, 1])
ax.set_aspect("equal", "box")
ax.set_xlabel("x [a$_0$]")
ax.set_ylabel("y [a$_0$]")
ax.set_title(f"{natom} Newtonian Pseudo-Random Walks")

spectrum = compute_spectrum(
traj.vels.transpose(1, 2, 0).reshape(2 * natom, traj.nstep),
timestep=traj.timestep,

)

Define units and conversion factors used for screen output and plotting.
This does not affect numerical values stored in the result object.
uc = UnitConfig(

acint_symbol="D",
acint_unit=sc.value("atomic unit of time")
/ sc.value("atomic unit of length") ** 2,
acint_unit_str="m2/s",
acint_fmt=".2e",
freq_unit=TERAHERTZ,
freq_unit_str="THz",
time_unit=PICOSECOND,
time_unit_str="ps",
time_fmt=".2f",

)

The maximum cutoff frequency is chosen to be 1 THz,
by inspecting the first spectrum plot.
Beyond the cutoff frequency, the spectrum has resonance peaks that
the Lorentz model is not designed to handle.
result = estimate_acint(

spectrum, LorentzModel(), fcut_max=TERAHERTZ, verbose=True, uc=uc
)

Plotting
plt.close(f"spectrum_{block_size}")
, ax = plt.subplots(num=f"spectrum{block_size}")
plot_fitted_spectrum(ax, uc, result)
plt.close(f"extras_{block_size}")
, axs = plt.subplots(2, 2, num=f"extras{block_size}")
plot_extras(axs, uc, result)
return result

result_1 = demo_stacie()

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [THz]

--------- ---------- ----------
(continues on next page)

5.4. Diffusion on a Surface with Newtonian Dynamics 85

STACIE, Release 1.0

(continued from previous page)

15.0 inf 1.41e-01 (Variance of the correlation time estimate is too large.)
15.9 inf 1.50e-01 (Variance of the correlation time estimate is too large.)
16.9 inf 1.60e-01 (Variance of the correlation time estimate is too large.)
18.0 inf 1.70e-01 (Variance of the correlation time estimate is too large.)
19.1 inf 1.81e-01 (Variance of the correlation time estimate is too large.)
20.3 34.0 1.93e-01
21.6 33.6 2.06e-01
23.0 33.2 2.19e-01
24.4 32.8 2.33e-01
25.9 32.4 2.48e-01
27.6 32.1 2.64e-01
29.3 32.3 2.81e-01
31.2 33.3 2.99e-01
33.2 35.6 3.18e-01
35.3 39.6 3.39e-01
37.5 45.5 3.61e-01
39.9 55.2 3.84e-01
42.4 74.8 4.09e-01
45.1 101.9 4.35e-01
48.0 132.8 4.63e-01

Cutoff criterion exceeds incumbent + margin: 32.1 + 100.0.

INPUT TIME SERIES
Time step: 0.01 ps
Simulation time: 100.00 ps
Maximum degrees of freedom: 400.0

MAIN RESULTS
Autocorrelation integral: 5.80e-07 ± 1.61e-08 m2/s
Integrated correlation time: 0.72 ± 0.02 ps

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 26.6 (ideally > 60)
Regression cost Z-score: -0.2 (ideally < 2)
Cutoff criterion Z-score: -0.2 (ideally < 2)

MODEL lorentz(0.1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 2.54e-01 THz
Exponential correlation time: 0.99 ± 0.06 ps

RECOMMENDED SIMULATION SETTINGS (EXPONENTIAL CORR. TIME)
Block time: 0.31 ± 0.03 ps
Simulation time: 61.92 ± 0.47 ps

86 Chapter 5. Worked Examples

STACIE, Release 1.0

5.4. Diffusion on a Surface with Newtonian Dynamics 87

STACIE, Release 1.0

The spectrum has several peaks related to oscillations of the particles around a local minimum.
These peaks are irrelevant to the diffusion coefficient. The broad peak at zero frequency is used
by STACIE to derive the diffusion coefficient. The obtained value is not directly comparable to
experiment because the 2D lattice model for the surface is not based on an experimental case.
However, the order of magnitude is comparable to the self-diffusion constants of pure liquids
[BUNO22].

It is also interesting to compare the integrated and exponential autocorrelation time, as they are
not the same in this case.

88 Chapter 5. Worked Examples

STACIE, Release 1.0

print(f"corrtime_exp = {result_1.corrtime_exp / PICOSECOND:.3f} ps")
print(f"corrtime_int = {result_1.corrtime_int / PICOSECOND:.3f} ps")

corrtime_exp = 0.985 ps
corrtime_int = 0.718 ps

The integrated autocorrelation time is smaller than the exponential one because the former is an
average of all time scales of the particle velocities. This includes the slow diffusion and faster
oscillations in local minima. In contrast, the exponential autocorrelation time only represents the
slow diffusive motion.

Finally, it is well known that the velocity autocorrelation function of molecules in a liquid decays
according to a power law [AW70]. One might wonder why the Lorentz model can be used here
since it implies that diffusion can be described with an exponentially decaying autocorrelation
function. The system in this notebook exhibits exponential decay because every particle only
interacts with the surface, and not with each other, such that there are no collective modes with
long memory effects.

5.4.4 Surface diffusion with block averages
This section repeats the same example, but now with block averages of velocities. Block averages
are primarily useful for reducing storage requirements when saving trajectories to disk before
processing them with STACIE. In this example, the block size is determined by the following
guideline:

print(np.pi * result_1.corrtime_exp / (10 * TIMESTEP))

61.920082928051755

Let’s use a block size of 60 to stay on the safe side.

result_60 = demo_stacie(60)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [THz]

--------- ---------- ----------
15.0 inf 1.41e-01 (Variance of the correlation time estimate is too large.)
15.9 inf 1.51e-01 (Variance of the correlation time estimate is too large.)
16.9 inf 1.60e-01 (Variance of the correlation time estimate is too large.)
18.0 inf 1.71e-01 (Variance of the correlation time estimate is too large.)
19.1 inf 1.82e-01 (Variance of the correlation time estimate is too large.)
20.3 33.9 1.93e-01
21.6 33.5 2.06e-01
23.0 33.1 2.19e-01
24.4 32.6 2.33e-01
25.9 32.3 2.48e-01
27.6 32.1 2.64e-01
29.3 32.6 2.81e-01
31.2 34.2 2.99e-01
33.2 37.2 3.19e-01
35.3 41.7 3.39e-01
37.5 48.2 3.61e-01
39.9 58.0 3.84e-01
42.4 75.9 4.09e-01

(continues on next page)

5.4. Diffusion on a Surface with Newtonian Dynamics 89

STACIE, Release 1.0

(continued from previous page)

45.1 96.6 4.36e-01
48.0 117.7 4.64e-01
51.1 134.9 4.94e-01

Cutoff criterion exceeds incumbent + margin: 32.1 + 100.0.

INPUT TIME SERIES
Time step: 0.30 ps
Simulation time: 99.90 ps
Maximum degrees of freedom: 400.0

MAIN RESULTS
Autocorrelation integral: 5.80e-07 ± 1.61e-08 m2/s
Integrated correlation time: 1.00 ± 0.03 ps

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 26.0 (ideally > 60)
Regression cost Z-score: -0.2 (ideally < 2)
Cutoff criterion Z-score: -0.2 (ideally < 2)

MODEL lorentz(0.1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 2.49e-01 THz
Exponential correlation time: 0.99 ± 0.06 ps

RECOMMENDED SIMULATION SETTINGS (EXPONENTIAL CORR. TIME)
Block time: 0.31 ± 0.03 ps
Simulation time: 62.17 ± 0.47 ps

90 Chapter 5. Worked Examples

STACIE, Release 1.0

5.4. Diffusion on a Surface with Newtonian Dynamics 91

STACIE, Release 1.0

As expected, there are no significant changes in the results.

It is again interesting to compare the integrated and exponential autocorrelation times.

print(f"corrtime_exp = {result_60.corrtime_exp / PICOSECOND:.3f} ps")
print(f"corrtime_int = {result_60.corrtime_int / PICOSECOND:.3f} ps")

corrtime_exp = 0.989 ps
corrtime_int = 0.998 ps

92 Chapter 5. Worked Examples

STACIE, Release 1.0

The exponential autocorrelation time is unaffected by the block averages. However, the inte-
grated autocorrelation time has increased and is now closer to the exponential value. Taking
block averages removes the fastest oscillations, causing the integrated autocorrelation time to be
dominated by slow diffusive motion.

5.4.5 Regression Tests
If you are experimenting with this notebook, you can ignore any exceptions below. The tests are
only meant to pass for the notebook in its original form.

acint_unit = sc.value("atomic unit of time") / sc.value("atomic unit of length") ** 2
acint_1 = result_1.acint / acint_unit
if abs(acint_1 - 5.80e-7) > 5e-9:

raise ValueError(f"Wrong acint (no block average): {acint_1:.2e}")
acint_60 = result_60.acint / acint_unit
if abs(acint_60 - 5.80e-7) > 5e-9:

raise ValueError(f"Wrong acint (block size 60): {acint_60:.2e}")

The remaining notebooks process the output of external simulation codes. Input files for these
simulations can be found in the Git source repository of STACIE. You can rerun these simulations
to generate the required data or use the data files from the ZIP archive mentioned above.

5.5 Shear Viscosity of a Lennard-Jones LiquidNear the Triple
Point (LAMMPS)

This example shows how to calculate viscosity of argon from pressure tensor data obtained from
LAMMPS MD simulations. The required theoretical background is explained the Shear Viscosity
section. The same simulations are also used for the bulk viscosity and thermal conductivity ex-
amples in the following two notebooks. The goal of the argon examples is to derive the three
transport properties with a relative error smaller than those found in the literature.

All argon MD simulations use the Lennard-Jones potential with reduced Lennard-Jones units. For
example, the reduced unit of viscosity is denoted as η*, and the reduced unit of time as τ*. The
simulated system consists of 1372 argon atoms. The thermodynamic state 𝜌 = 0.8442 ρ∗ and
𝑇 = 0.722 T∗ corresponds to a liquid phase near the triple point (𝜌 = 0.0845 ρ∗ and 𝑇 = 0.69 T∗).
This liquid state is known to exhibit slow relaxation times, which complicates the convergence of
transport properties and makes it a popular test case for computational methods.

The LAMMPS input files can be found in the directory docs/data/lammps_lj3d of STACIE’s Git
source repository. To obtain sufficient data for all three properties, we performed 100 independent
runs, for which the guesstimated relative error is tabulated below. The Lorentz model is used to fit
the spectrum, with degrees 𝑆num = {0, 2} and 𝑆den = {2}, corresponding to 𝑃 = 3 parameters.

Property 𝑀 Guess rel. error

Shear viscosity 500 0.5 %
Bulk viscosity 100 1.2 %
Thermal conductivity 300 0.7 %

The (initial) settings for the production runs were determined as follows. In general, the inte-
gration time step in MD simulations roughly corresponds to one tenth of a period of the fastest
oscillations in the system. At shorter time scales than 10 steps, the dynamics is most likely irrel-
evant for transport properties. Hence, in our first simulations, all data was recorded with block
averages of 10 steps. As mentioned in the section on the block averages, at least 400𝑃 blocks are
recommended. The initial production runs therefore consisted of 12000 MD steps. Note that these

5.5. Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 93

https://en.wikipedia.org/wiki/Lennard-Jones_potential

STACIE, Release 1.0

values are only coarse estimates. As explained below, the production runs were extended twice
to improve the statistics.

Details of the MD simulations can be found the LAMMPS inputs docs/data/lammps_lj3d/
template-init.lammps and docs/data/lammps_lj3d/template-ext.lammps in STACIE’s Git repository.
These input files are actually Jinja2 templates that are rendered with different random seeds (and
restart files) for each run. The initial production simulations start from an FCC crystal structure,
which is first melted for 5000 steps at an elevated temperature of 𝑇 = 1.5 T∗ in theNVT ensemble.
The system is then equilibrated at the desired temperature of 𝑇 = 0.722 T∗ for 5000 additional
steps. Starting from the equilibrated states, production runs were performed in the NVE ensem-
ble. The velocities are not rescaled after the NVT equilibration, to ensure that the set of NVE runs
as a whole is representative of the NVT ensemble. During the production phase, trajectory data
is collected with block averages over 10 steps.

The LAMMPS input files contain commands to write output files that can be directly loaded using
Python and NumPy without any additional converters or wrappers. The following output files
from docs/data/lammps_lj3d/sims/replica_????_part_?)/ were used for the analysis:

• info.yaml: simulation settings that may be useful for post-processing.

• nve_thermo.txt: subsampled instantaneous temperature and related quantities

• nve_pressure_blav.txt: block-averaged (off)diagonal pressure tensor components

• nve_heatflux_blav.txt: block-averaged 𝑥, 𝑦, and 𝑧 components of the heat flux vector, i.e. 𝐽h
𝑥 ,

𝐽h
𝑦 , and 𝐽h

𝑧 . Heat fluxes are used in the thermal conductivity example, not in this notebook.

Note

The results in this example were obtained using LAMMPS 29 Aug 2024 Update 3. Minor differ-
ences may arise when using a different version of LAMMPS, or even the same version compiled
with a different compiler.

5.5.1 Library Imports and Configuration
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from path import Path
from yaml import safe_load
from scipy.stats import chi2
from stacie import (

UnitConfig,
compute_spectrum,
estimate_acint,
LorentzModel,
plot_fitted_spectrum,
plot_extras,

)
from utils import plot_instantaneous_percentiles, plot_cumulative_temperature_histogram

mpl.rc_file("matplotlibrc")
%config InlineBackend.figure_formats = ["svg"]

94 Chapter 5. Worked Examples

https://jinja.palletsprojects.com/
https://github.com/lammps/lammps/releases/tag/stable_29Aug2024_update3

STACIE, Release 1.0

You normally do not need to change this path.
It only needs to be overridden when building the documentation.
DATA_ROOT = Path(os.getenv("DATA_ROOT", "./")) / "lammps_lj3d/sims/"

5.5.2 Analysis of the Equilibration Runs
To ensure that the production runs start from a well-equilibrated state, we first analyze the equi-
libration runs. The following code cell plots percentiles of the instantaneous temperature as a
function of time over all independent runs. For reference, the theoretical percentiles of the NVT
ensemble are shown as horizontal dotted lines.

def plot_equilibration(ntraj: int = 100):
"""Plot percentiles of the instantaneous temperature."""
Load the configuration from the YAML file.
with open(DATA_ROOT / "replica_0000_part_00/info.yaml") as fh:

info = safe_load(fh)
temp_d = info["temperature"]
ndof = info["natom"] * 3 - 3

Load trajectory data.
temps = []
time = None
for itraj in range(ntraj):

equil_dir = DATA_ROOT / f"replica_{itraj:04d}_part_00/"
data = np.loadtxt(equil_dir / "nvt_thermo.txt")
temps.append(data[:, 1])
if time is None:

time = info["block_size"] * info["timestep"] * np.arange(len(data))
temps = np.array(temps)

Select the last part (final temperature), discarding the melting phase.
temps = temps[:, 550:]
time = time[550:]

Plot the instantaneous and desired temperature.
plt.close("tempequil")
_, ax = plt.subplots(num="tempequil")
percents = [95, 80, 50, 20, 5]
plot_instantaneous_percentiles(

ax,
time,
temps,
percents,
expected=[chi2.ppf(percent / 100, ndof) * temp_d / ndof for percent in percents],

)
ax.set_title(

"Percentiles of the instantaneous temperature over the 100 equilibration runs"
)
ax.set_ylabel("Temperature")
ax.set_xlabel("Time")

plot_equilibration()

5.5. Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 95

STACIE, Release 1.0

The plot shows that the equilibration runs were successful: They reach the correct average tem-
perature and also exhibit the expected fluctuations. Note that we used a Langevin thermestat for
equilibration. This is a robust local thermostat that quickly brings all degrees of freedom to the
desired temperature. In comparison, a global Nosé-Hoover-chain (NHC) thermostat would still
show large oscillations in the temperature, even after 5000 steps. Taking the last state from an
NHC run generally results in biased initial conditions for the NVE runs. (You can see the differ-
ence by modifying the LAMMPS input files, rerunning them and then rerunning this notebook.)

5.5.3 Analysis of the Initial Production Simulations
The following code cell defines analysis functions:

• get_indep_paniso transforms the pressure tensor components into five independent
anisotropic contributions, as explained in the Shear Viscosity theory section.

• estimate_viscosity calculates the viscosity and plots the results. It also prints recommenda-
tions for data reduction (block averaging) and simulation time, as explained in the following
two sections of the documentation:

– Integrated and Exponential Autocorrelation Time
– Reducing Storage Requirements with Block Averages

These will be used to determine whether our initial simulation settings are appropriate.

def get_indep_paniso(pcomps):
return np.array(

[
(pcomps[0] - 0.5 * pcomps[1] - 0.5 * pcomps[2]) / np.sqrt(3),
0.5 * pcomps[1] - 0.5 * pcomps[2],
pcomps[3],
pcomps[4],
pcomps[5],

]
(continues on next page)

96 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

)

def estimate_viscosity(name, pcomps, av_temperature, volume, timestep, verbose=True):
Create the spectrum of the pressure fluctuations.
Note that the Boltzmann constant is 1 in reduced LJ units.
uc = UnitConfig(

acint_fmt=".3f",
acint_symbol="η",
acint_unit_str="η*",
freq_unit_str="1/τ*",
time_fmt=".3f",
time_unit_str="τ*",

)
spectrum = compute_spectrum(

pcomps,
prefactors=volume / av_temperature,
timestep=timestep,

)

Estimate the viscosity from the spectrum.
result = estimate_acint(spectrum, LorentzModel(), verbose=verbose, uc=uc)

if verbose:
Plot some basic analysis figures.
plt.close(f"{name}_spectrum")
_, ax = plt.subplots(num=f"{name}_spectrum")
plot_fitted_spectrum(ax, uc, result)
plt.close(f"{name}_extras")
_, axs = plt.subplots(2, 2, num=f"{name}_extras")
plot_extras(axs, uc, result)

Return the viscosity
return result

The next cell performs the analysis of the initial simulations. It prints the recommended block
size and the simulation time for the production runs, and then generates two figures:

• The spectrum of the off-diagonal pressure fluctuations, and the model fitted to the spectrum.

• Additional intermediate results.

def analyze_production(npart: int, ntraj: int = 100, select: int | None = None):
"""
Perform the analysis of the production runs.

Parameters

npart

Number of parts in the production runs.
For the initial production runs, this is 1.

ntraj
Number of trajectories in the production runs.

select
If `None`, all anisotropic contributions are selected.

(continues on next page)

5.5. Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 97

STACIE, Release 1.0

(continued from previous page)

If not `None`, only select the given anisotropic contribution
for the viscosity estimate. Must be one of `0`, `1`, `2`, `3`, `4`, `None`.

Returns

result

The result from STACIE's `estimate_acint` function,
"""
Load the configuration from the YAML file.
with open(DATA_ROOT / "replica_0000_part_00/info.yaml") as fh:

info = safe_load(fh)

Load trajectory data.
thermos = []
pcomps_full = []
for itraj in range(ntraj):

thermos.append([])
pcomps_full.append([])
for ipart in range(npart):

prod_dir = DATA_ROOT / f"replica_{itraj:04d}_part_{ipart:02d}/"
thermos[-1].append(np.loadtxt(prod_dir / "nve_thermo.txt"))
pcomps_full[-1].append(np.loadtxt(prod_dir / "nve_pressure_blav.txt"))

thermos = [np.concatenate(parts).T for parts in thermos]
pcomps_full = [np.concatenate(parts).T for parts in pcomps_full]
av_temperature = np.mean([thermo[1] for thermo in thermos])

Compute the viscosity.
pcomps_aniso = np.concatenate([get_indep_paniso(p[1:]) for p in pcomps_full])
if select is not None:

if select < 0 or select > 4:
raise ValueError(f"Invalid selection {select}, must be in [0, 4]")

pcomps_aniso = pcomps_aniso[select:)5]
return estimate_viscosity(

f"part{npart}",
pcomps_aniso,
av_temperature,
info["volume"],
info["timestep"] * info["block_size"],
verbose=select is None,

)

eta_production_init = analyze_production(1).acint

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [1/τ*]

--------- ---------- ----------
15.0 inf 3.93e-01 (Variance of the correlation time estimate is too large.)
15.9 inf 4.18e-01 (Variance of the correlation time estimate is too large.)
16.9 inf 4.45e-01 (Variance of the correlation time estimate is too large.)
18.0 inf 4.73e-01 (Variance of the correlation time estimate is too large.)
19.1 inf 5.04e-01 (Variance of the correlation time estimate is too large.)
20.3 inf 5.36e-01 (Variance of the correlation time estimate is too large.)

(continues on next page)

98 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

21.6 inf 5.71e-01 (Variance of the correlation time estimate is too large.)
23.0 inf 6.08e-01 (Variance of the correlation time estimate is too large.)
24.4 inf 6.47e-01 (Variance of the correlation time estimate is too large.)
25.9 inf 6.89e-01 (Variance of the correlation time estimate is too large.)
27.6 inf 7.33e-01 (Variance of the correlation time estimate is too large.)
29.3 8.0 7.81e-01
31.2 11.4 8.31e-01
33.2 16.1 8.85e-01
35.3 22.0 9.42e-01
37.5 29.1 1.00e+00
39.9 37.1 1.07e+00
42.4 45.7 1.14e+00
45.1 54.2 1.21e+00
48.0 63.4 1.29e+00
51.1 73.3 1.37e+00
54.4 85.0 1.46e+00
57.8 99.6 1.55e+00
61.5 118.2 1.65e+00

Cutoff criterion exceeds incumbent + margin: 8.0 + 100.0.

INPUT TIME SERIES
Time step: 0.030 τ*
Simulation time: 36.000 τ*
Maximum degrees of freedom: 1000.0

MAIN RESULTS
Autocorrelation integral: 3.205 ± 0.063 η*
Integrated correlation time: 0.138 ± 0.003 τ*

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 29.4 (ideally > 60)
Regression cost Z-score: -0.6 (ideally < 2)
Cutoff criterion Z-score: 6.3 (ideally < 2)

MODEL lorentz(0.1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 7.82e-01 1/τ*
Exponential correlation time: 0.377 ± 0.036 τ*

RECOMMENDED SIMULATION SETTINGS (EXPONENTIAL CORR. TIME)
Block time: 0.118 ± 0.020 τ*
Simulation time: 23.689 ± 0.285 τ*

5.5. Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 99

STACIE, Release 1.0

Several things can be observed in the analysis of the initial production runs:

• The recommendations based on the exponential correlation time were met by the initial
simulation settings.

– The recommended simulation time is 24 τ*, which about 8000 steps. The initial produc-
tion runs (12000 steps) were therefore sufficient.

– The recommended block time is 0.118 τ*, which corresponds to about 40 steps. The block
size used in the initial production runs (10 steps) was sufficiently small.

• The relative error of the viscosity estimate is about 2%, which is larger than the guesstimated

100 Chapter 5. Worked Examples

STACIE, Release 1.0

value 0.5%. This is fine and somewhat expected, since this guess is known to be crude.

• The Lorentz model used to fit the spectrum was a fair choice, but for higher frequencies,
the sampling PSD clearly decays faster than the fitted model. For the case of viscosity, there
is (to the best of our knowledge) no solid theoretical argument to support the exponential
decay of the ACF of the pressure tensor. It just seems to be a reasonable choice for this case.

• The effective number of points fitted to the spectrum is 29.4, which is low for a 3 parameter
model. For high-quality production simulations, it would be good to triple the simulation
length, as to multiply the resolution of the frequency grid by 3. This is hopefully sufficient
to reach 60 effective points.

As can be seen in the comparison to literature results below, the results for the initial production
runs were already quite good. However, for the sake of demonstration, the production runs were
extended by an additional 24000 steps each, to triple the simulation time. This revealed that the
effective number of points fitted to the spectrum increase to 61, which is a sublinear increase,
just enough to reach the target of 60. For the sake of demonstration, we decided to extend the
production runs by another 64000 steps, which resulted in a total simulation time of 300 τ* per
run.

The difficulty of increasing the effective number of fitted points can be understood as follows. The
Lorentz model is not capable of fitting the spectrum to higher frequencies. By including more data
points, the limitations of the approximating model also become clearer, and the cutoff criterion
will detect some underfitting (and thus risk for bias) at lower cutoffs.

5.5.4 Analysis of the Production Simulations
Here we just repeat the analysis, but now with extended production runs.

eta_production_ext = analyze_production(3).acint

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [1/τ*]

--------- ---------- ----------
15.0 inf 4.71e-02 (Variance of the correlation time estimate is too large.)
15.9 inf 5.01e-02 (Variance of the correlation time estimate is too large.)
16.9 inf 5.34e-02 (Variance of the correlation time estimate is too large.)
18.0 inf 5.68e-02 (Variance of the correlation time estimate is too large.)
19.1 inf 6.05e-02 (Variance of the correlation time estimate is too large.)
20.3 inf 6.44e-02 (Variance of the correlation time estimate is too large.)
21.6 inf 6.85e-02 (Variance of the correlation time estimate is too large.)
23.0 inf 7.30e-02 (Variance of the correlation time estimate is too large.)
24.4 inf 7.77e-02 (Variance of the correlation time estimate is too large.)
25.9 inf 8.27e-02 (Variance of the correlation time estimate is too large.)
27.6 inf 8.80e-02 (Variance of the correlation time estimate is too large.)
29.3 inf 9.37e-02 (Variance of the correlation time estimate is too large.)
31.2 inf 9.97e-02 (Variance of the correlation time estimate is too large.)
33.2 inf 1.06e-01 (Variance of the correlation time estimate is too large.)
35.3 inf 1.13e-01 (Variance of the correlation time estimate is too large.)
37.5 inf 1.20e-01 (Variance of the correlation time estimate is too large.)
39.9 inf 1.28e-01 (Variance of the correlation time estimate is too large.)
42.4 inf 1.36e-01 (Variance of the correlation time estimate is too large.)
45.1 inf 1.45e-01 (Variance of the correlation time estimate is too large.)
48.0 inf 1.54e-01 (Variance of the correlation time estimate is too large.)
51.1 inf 1.64e-01 (Variance of the correlation time estimate is too large.)
54.4 inf 1.75e-01 (Variance of the correlation time estimate is too large.)
57.8 inf 1.86e-01 (Variance of the correlation time estimate is too large.)

(continues on next page)

5.5. Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 101

STACIE, Release 1.0

(continued from previous page)

61.5 inf 1.98e-01 (Variance of the correlation time estimate is too large.)
65.5 inf 2.11e-01 (Variance of the correlation time estimate is too large.)
69.7 inf 2.25e-01 (Variance of the correlation time estimate is too large.)
74.1 inf 2.39e-01 (Variance of the correlation time estimate is too large.)
78.9 inf 2.55e-01 (Variance of the correlation time estimate is too large.)
83.9 inf 2.71e-01 (Variance of the correlation time estimate is too large.)
89.3 inf 2.89e-01 (Variance of the correlation time estimate is too large.)
95.0 inf 3.07e-01 (Variance of the correlation time estimate is too large.)

101.1 inf 3.27e-01 (Variance of the correlation time estimate is too large.)
107.6 inf 3.48e-01 (Variance of the correlation time estimate is too large.)
114.5 2.6 3.70e-01
121.9 2.5 3.94e-01
129.7 2.4 4.20e-01
138.0 2.3 4.47e-01
146.9 2.4 4.76e-01
156.3 3.0 5.06e-01
166.4 4.1 5.39e-01
177.1 6.3 5.74e-01
188.5 10.2 6.11e-01
200.6 16.3 6.50e-01
213.5 25.2 6.92e-01
227.2 37.2 7.37e-01
241.9 52.6 7.84e-01
257.4 71.1 8.35e-01
274.0 93.2 8.89e-01
291.6 119.6 9.46e-01

Cutoff criterion exceeds incumbent + margin: 2.3 + 100.0.

INPUT TIME SERIES
Time step: 0.030 τ*
Simulation time: 300.000 τ*
Maximum degrees of freedom: 1000.0

MAIN RESULTS
Autocorrelation integral: 3.245 ± 0.026 η*
Integrated correlation time: 0.139 ± 0.001 τ*

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 134.8 (ideally > 60)
Regression cost Z-score: -0.0 (ideally < 2)
Cutoff criterion Z-score: 2.9 (ideally < 2)

MODEL lorentz(0.1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 4.36e-01 1/τ*
Exponential correlation time: 0.414 ± 0.036 τ*

RECOMMENDED SIMULATION SETTINGS (EXPONENTIAL CORR. TIME)
Block time: 0.130 ± 0.020 τ*
Simulation time: 26.003 ± 0.288 τ*

102 Chapter 5. Worked Examples

STACIE, Release 1.0

Some remarks about the final results:

• The effective number of points has increased to 134.8, which is a fine number of data points
for a model with 𝑃 = 3 parameters.

• For higher frequency cutoffs, both Z-scores increase, showing that the autocorrelation func-
tion only decays exponentially in the limit of large lag times. This is expected, since at
sufficiently short time scales, the pressure tensor fluctuations are smooth functions, i.e. not
featuring the cusp of a purely exponential ACF.

5.5. Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 103

STACIE, Release 1.0

5.5.5 Comparison to Literature Results
Comprehensive literature surveys on computational estimates of the shear viscosity of a Lennard-
Jones fluid can be found in [MLK04a] and [VSG07a]. These papers also present new results, which
are included in the table below. Since the simulation settings (𝑟∗

cut = 2.5, 𝑁 = 1372, 𝑇 ∗ = 0.722
and 𝜌∗ = 0.8442) are identical to those used in this notebook, the reported values should be
directly comparable.

Method Simulation time [τ*] Shear viscosity [η*] Reference

EMD NVE (STACIE) 3600 3.205 ± 0.063 (here) initial
EMD NVE (STACIE) 10800 3.207 ± 0.040 (here) extension 1
EMD NVE (STACIE) 30000 3.245 ± 0.026 (here) extension 2
EMDNVE (Helfand-Einstein) 75000 3.277 ± 0.098 [MLK04a]
EMD NVE (Helfand-
moment)

600000 3.268 ± 0.055 [VSG07a]

This comparison confirms that STACIE can reproduce a well-known viscosity result, in line with
literature results. To achieve a state-of-the-art statistical uncertainty, it requires far less simulation
time. Even our longest production runs are still less than half as long as in the cited papers, and
we achieve a much smaller uncertainties.

To be fair, the simulation time only accounts for production runs. Our setup also includes a sig-
nificant amount of equilibration runs (3000 τ* in total) to ensure that different production runs are
uncorrelated. Even when these additional runs are included, the overall simulation time remains
significantly lower than in the cited papers.

5.5.6 Validation of the Production Runs
To further establish that our NVE runs together represent the NVT ensemble, the following two
cells perform additional validation checks.

• A plot of the conserved quantity of the separate NVE runs, to detect any drift.

• The distribution of the instantaneous temperature, which should match the desired NVT
distribution. For each individual NVE run and for the combined NVE runs, cumulative dis-
tributions are plotted. The function also plots the expected cumulative distribution of the
NVT ensemble.

def plot_total_energy():
Load trajectory data.
time = None
energies = []
for itraj in range(100):

time_traj = []
energies_traj = []
for ipart in range(3):

prod_dir = DATA_ROOT / f"replica_{itraj:04d}_part_{ipart:02d}/"
data = np.loadtxt(prod_dir / "nve_thermo.txt")
if time is None:

time_traj.append(data[:, 0])
energies_traj.append(data[:, 2:])

if time is None:
time = np.concatenate(time_traj)

energies.append(energies_traj)
energies = [np.concatenate(energy).T for energy in energies]

(continues on next page)

104 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

Plot the total energy of the NVE runs.
plt.close("energyprod")
_, ax = plt.subplots(num="energyprod")
for kes, pes in energies:

ax.plot(time, kes + pes)
ax.set_xlabel("Time")
ax.set_ylabel("Total Energy")
ax.set_title("Total Energy of the NVE Runs")

plot_total_energy()

There is no noticeable drift in the total energy of the NVE runs. Apart from the usual (and ac-
ceptable) numerical noise, the total energy is conserved perfectly.

def validate_temperature():
"""Plot cumulative distributions of the instantaneous temperature."""
Load the configuration from the YAML file.
with open(DATA_ROOT / "replica_0000_part_00/info.yaml") as fh:

info = safe_load(fh)
temp_d = info["temperature"]
ndof = info["natom"] * 3 - 3

Load trajectory data.
temps = []
for itraj in range(100):

temps.append([])
for ipart in range(3):

prod_dir = DATA_ROOT / f"replica_{itraj:04d}_part_{ipart:02d}/"
temps[-1].append(np.loadtxt(prod_dir / "nve_thermo.txt")[:, 1])

(continues on next page)

5.5. Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 105

STACIE, Release 1.0

(continued from previous page)

temps = [np.concatenate(temp).T for temp in temps]

Plot the instantaneous and desired temperature distribution.
plt.close("tempprod")
_, ax = plt.subplots(num="tempprod")
plot_cumulative_temperature_histogram(ax, temps, temp_d, ndof, "τ*")

validate_temperature()

This plot offers detailed insight into NVE versus NVT temperature distributions:

• In the NVE ensemble, the temperature distribution is relatively narrow. Hence, using a single
NVE run would not be representative of the temperature variance of the NVT ensemble.

• Some of the individual NVE runs have significantly lower ore higher temperatures than the
average. If the transport property of interest has a nonlinear dependence on the temperature,
this effect will lead to a shift in the estimated transport property, compared to using a single
NVE run.

In the limit of macroscopic system sizes (𝑁 → ∞), the NVE ensemble converges to the NVT
ensemble. However, in simulations, one operates at finite system sizes, well below the thermo-
dynamic limit.

5.5.7 Validation of the Independence of the Anistropic Contributions
Here we validate numerically that the five independent anisotropic contributions to the pressure
tensor are indeed statistically independent. The covariancematrix of the anisotropic contributions
is computed and the off-diagonal elements are plotted.

def validate_independence(ntraj: int = 100):
"""Validate the independence of the anisotropic contributions."""

(continues on next page)

106 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

Load trajectory data.
pcomps_full = []
for itraj in range(ntraj):

pcomps_full.append([])
for ipart in range(3):

prod_dir = DATA_ROOT / f"replica_{itraj:04d}_part_{ipart:02d}/"
pcomps_full[-1].append(np.loadtxt(prod_dir / "nve_pressure_blav.txt")[:, 1:])

pcomps_aniso = [get_indep_paniso(np.concatenate(parts).T) for parts in pcomps_full]

Compute the average of the covariance matrix over all NVE trajectories.
cov = np.mean([np.cov(p, ddof=0) for p in pcomps_aniso], axis=0)
scale = abs(cov).max() * 1.05

Plot the covariance matrix.
plt.close("covariance")
_, ax = plt.subplots(num="covariance")
im = ax.imshow(

cov, cmap="coolwarm", vmin=-scale, vmax=scale, extent=[0.5, 5.5, 0.5, 5.5]
)
ax.set_title("Covariance of Anisotropic Pressure Contributions")
ax.set_xlabel("Anisotropic Contribution P'_i")
ax.set_ylabel("Anisotropic Contribution P'_j")
plt.colorbar(im, ax=ax)

validate_independence()

The plot confirms that there is (at least visually) no sign of any statistical correlation between the

5.5. Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 107

STACIE, Release 1.0

anisotropic contributions. Note that one may perform more rigorous statistical tests to validate
the independence of the five contributions. Here, we keep it simple for the sake of an intuitive
demonstration.

5.5.8 Validation of the consistency of the Anisotropic Contributions
The following code cell shows that the five independent anisotropic contributions result in the
same shear viscosity estimate, within the predicted uncertainties.

def validate_consistency():
for i in range(5):

result = analyze_production(3, select=i)
eta = result.acint
eta_std = result.acint_std
print(f"Anisotropic contribution {i + 1}: η = {eta:.3f} ± {eta_std:.3f} η*")

validate_consistency()

Anisotropic contribution 1: η = 3.247 ± 0.053 η*
Anisotropic contribution 2: η = 3.193 ± 0.047 η*
Anisotropic contribution 3: η = 3.248 ± 0.052 η*
Anisotropic contribution 4: η = 3.183 ± 0.048 η*
Anisotropic contribution 5: η = 3.246 ± 0.052 η*

Note that onemay performmore rigorous statistical tests to validate the consistency of the results.
Here, we keep it simple for the sake of an intuitive demonstration.

5.5.9 Regression Tests
If you are experimenting with this notebook, you can ignore any exceptions below. The tests are
only meant to pass for the notebook in its original form.

if abs(eta_production_init - 3.236) > 0.1:
raise ValueError(f"wrong viscosity (production): {eta_production_init:.3e}")

if abs(eta_production_ext - 3.257) > 0.1:
raise ValueError(f"wrong viscosity (production): {eta_production_ext:.3e}")

5.6 Bulk Viscosity of a Lennard-Jones Liquid Near the Triple
Point (LAMMPS)

This example demonstrates how to compute the bulk viscosity of a Lennard-Jones liquid near its
triple point using LAMMPS. It uses the same production runs and conventions as in the Shear
viscosity example. The required theoretical background is explained the section Bulk Viscosity. In
essence, it is computed in the same way as the shear viscosity, except that the isotropic pressure
fluctuations are used as input.

Note

The results in this example were obtained using LAMMPS 29 Aug 2024 Update 3. Minor differ-
ences may arise when using a different version of LAMMPS, or even the same version compiled
with a different compiler.

108 Chapter 5. Worked Examples

https://github.com/lammps/lammps/releases/tag/stable_29Aug2024_update3

STACIE, Release 1.0

5.6.1 Library Imports and Matplotlib Configuration
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from path import Path
from yaml import safe_load
from stacie import (

UnitConfig,
compute_spectrum,
estimate_acint,
LorentzModel,
plot_fitted_spectrum,
plot_extras,

)

mpl.rc_file("matplotlibrc")
%config InlineBackend.figure_formats = ["svg"]

You normally do not need to change this path.
It only needs to be overridden when building the documentation.
DATA_ROOT = Path(os.getenv("DATA_ROOT", "./")) / "lammps_lj3d/sims/"

5.6.2 Analysis of the Production Simulations
The following code cells define analysis functions used below.

• get_piso: Computes the isotropic pressure from the diagonal components of the time-
dependent pressure tensor (𝑃𝑥𝑥, 𝑃𝑦𝑦, and 𝑃𝑧𝑧), as explained in the bulk viscosity theory sec-
tion.

• estimate_bulk_viscosity: Computes the bulk viscosity, visualizes the results, and provides
recommendations for data reduction (block averaging) and simulation time, as explained in
the following two sections of the documentation:

– Integrated and Exponential Autocorrelation Time
– Reducing Storage Requirements with Block Averages

def estimate_bulk_viscosity(name, p_iso, av_temperature, volume, timestep):
Compute spectrum of the isotropic pressure fluctuations.
Note that the Boltzmann constant is 1 in reduced LJ units.
uc = UnitConfig(

acint_fmt=".3f",
acint_symbol="η_b",
acint_unit_str="η*",
freq_unit_str="1/τ*",
time_fmt=".3f",
time_unit_str="τ*",

)
spectrum = compute_spectrum(

p_iso,
prefactors=volume / av_temperature,
timestep=timestep,
include_zero_freq=False,

(continues on next page)

5.6. Bulk Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 109

STACIE, Release 1.0

(continued from previous page)

)

Estimate the bulk viscosity from the spectrum.
result = estimate_acint(spectrum, LorentzModel(), verbose=True, uc=uc)

Plot some basic analysis figures.
plt.close(f"{name}_spectrum")
_, ax = plt.subplots(num=f"{name}_spectrum")
plot_fitted_spectrum(ax, uc, result)
plt.close(f"{name}_extras")
_, axs = plt.subplots(2, 2, num=f"{name}_extras")
plot_extras(axs, uc, result)

Return the bulk viscosity
return result.acint

Note

When computing bulk viscosity, the include_zero_freq argument in the compute_spectrum func-
tion must be set to False, as the average pressure is nonzero. This ensures the DC component
is excluded from the spectrum. See the bulk viscosity theory section for more details.

def demo_production(npart: int = 3, ntraj: int = 100):
"""
Perform the analysis of the production runs.

Parameters

npart

Number of parts in the production runs.
For the initial production runs, this is 1.

ntraj
Number of trajectories in the production runs.

Returns

eta_bulk

The estimated bulk viscosity.
"""
Load the configuration from the YAML file.
with open(DATA_ROOT / "replica_0000_part_00/info.yaml") as fh:

info = safe_load(fh)

Load trajectory data.
thermos = []
p_isos = []
for itraj in range(ntraj):

thermos.append([])
p_isos.append([])
for ipart in range(npart):

prod_dir = DATA_ROOT / f"replica_{itraj:04d}_part_{ipart:02d}/"
thermos[-1].append(np.loadtxt(prod_dir / "nve_thermo.txt"))

(continues on next page)

110 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

The average over columns 2, 3 and 4 of parts corresponds
to the time-dependent isotropic pressure.
p_comps = np.loadtxt(prod_dir / "nve_pressure_blav.txt")
p_isos[-1].append(p_comps[:, 1:4].mean(axis=1))

thermos = [np.concatenate(parts).T for parts in thermos]
p_iso = [np.concatenate(parts) for parts in p_isos]

Compute the average temperature
av_temperature = np.mean([thermo[1] for thermo in thermos])

Compute the bulk viscosity
return estimate_bulk_viscosity(

f"part{npart}",
p_iso,
av_temperature,
info["volume"],
info["timestep"] * info["block_size"],

)

eta_bulk_production = demo_production(3)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [1/τ*]

--------- ---------- ----------
15.0 inf 5.03e-02 (No correlation time estimate available.)
16.0 inf 5.36e-02 (No correlation time estimate available.)
17.1 inf 5.71e-02 (No correlation time estimate available.)
18.2 inf 6.07e-02 (No correlation time estimate available.)
19.4 inf 6.46e-02 (No correlation time estimate available.)
20.7 inf 6.88e-02 (No correlation time estimate available.)
22.0 inf 7.33e-02 (No correlation time estimate available.)
23.5 inf 7.80e-02 (No correlation time estimate available.)
25.0 inf 8.30e-02 (No correlation time estimate available.)
26.7 inf 8.84e-02 (No correlation time estimate available.)
28.4 inf 9.41e-02 (No correlation time estimate available.)
30.3 inf 1.00e-01 (No correlation time estimate available.)
32.3 inf 1.07e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-1.73755917e-03, 4.17952194e-01, 2.58378537e+00]))
34.4 inf 1.13e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-1.33790325e-03, 4.17271199e-01, 2.58406670e+00]))
36.7 inf 1.21e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-2.33922935e-04, 4.16524612e-01, 2.58370931e+00]))
39.1 inf 1.29e-01 (Variance of the correlation time estimate is too large.)
41.6 inf 1.37e-01 (Variance of the correlation time estimate is too large.)
44.3 inf 1.46e-01 (Variance of the correlation time estimate is too large.)
47.2 inf 1.55e-01 (Variance of the correlation time estimate is too large.)
50.3 inf 1.65e-01 (Variance of the correlation time estimate is too large.)
53.6 inf 1.76e-01 (Variance of the correlation time estimate is too large.)
57.1 inf 1.87e-01 (Variance of the correlation time estimate is too large.)
60.8 inf 1.99e-01 (Variance of the correlation time estimate is too large.)
64.7 inf 2.12e-01 (Variance of the correlation time estimate is too large.)
68.9 inf 2.26e-01 (Variance of the correlation time estimate is too large.)

(continues on next page)

5.6. Bulk Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 111

STACIE, Release 1.0

(continued from previous page)

73.4 inf 2.40e-01 (Variance of the correlation time estimate is too large.)
78.2 inf 2.56e-01 (Variance of the correlation time estimate is too large.)
83.3 inf 2.72e-01 (Variance of the correlation time estimate is too large.)
88.7 inf 2.90e-01 (Variance of the correlation time estimate is too large.)
94.4 inf 3.08e-01 (Variance of the correlation time estimate is too large.)

100.5 inf 3.28e-01 (Variance of the correlation time estimate is too large.)
107.1 inf 3.49e-01 (Variance of the correlation time estimate is too large.)
114.0 inf 3.72e-01 (Variance of the correlation time estimate is too large.)
121.4 inf 3.96e-01 (Variance of the correlation time estimate is too large.)
129.2 inf 4.22e-01 (Variance of the correlation time estimate is too large.)
137.6 inf 4.49e-01 (Variance of the correlation time estimate is too large.)
146.5 inf 4.78e-01 (Variance of the correlation time estimate is too large.)
156.0 3.6 5.09e-01
166.1 3.3 5.41e-01
176.8 2.9 5.76e-01
188.3 2.5 6.13e-01
200.4 2.0 6.53e-01
213.4 1.7 6.95e-01
227.2 1.6 7.40e-01
241.9 2.0 7.88e-01
257.5 2.8 8.38e-01
274.2 4.3 8.92e-01
291.9 6.6 9.50e-01
310.7 9.9 1.01e+00
330.8 14.3 1.08e+00
352.2 20.1 1.15e+00
374.9 27.6 1.22e+00
399.1 37.2 1.30e+00
424.9 49.2 1.38e+00
452.3 64.0 1.47e+00
481.5 82.1 1.57e+00
512.6 104.5 1.67e+00

Cutoff criterion exceeds incumbent + margin: 1.6 + 100.0.

INPUT TIME SERIES
Time step: 0.030 τ*
Simulation time: 300.000 τ*
Maximum degrees of freedom: 200.0

MAIN RESULTS
Autocorrelation integral: 1.191 ± 0.021 η*
Integrated correlation time: 0.050 ± 0.001 τ*

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 214.6 (ideally > 60)
Regression cost Z-score: 0.1 (ideally < 2)
Cutoff criterion Z-score: 2.5 (ideally < 2)

MODEL lorentz(0.1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 6.99e-01 1/τ*
Exponential correlation time: 0.504 ± 0.040 τ*

RECOMMENDED SIMULATION SETTINGS (EXPONENTIAL CORR. TIME)
(continues on next page)

112 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

Block time: 0.158 ± 0.022 τ*
Simulation time: 31.694 ± 0.316 τ*

The cutoff criterion Z-score is relatively high, around 2. This suggests that the fits on the two
halves deviate more from each other than what would be expected from the uncertainty of the
spectrum. There are multiple potential explanations for this observation:

• One potential explanation is that the isotropic pressure fluctuations are not perfectly Gaus-
sian. This is expected for a Lennard-Jones fluid, as expansion of the system will result in

5.6. Bulk Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS) 113

STACIE, Release 1.0

slightly lower restoring forces than compression. Such a slightly non-Gaussian distribution
of the pressure fluctuations can result in a distribution of spectral data that deviates from the
Gamma distribution employed by STACIE.

• Another potential cause is that there is not yet sufficient data to fix the cutoff frequency. This
can be addressed by generating more trajectory data, which will make it easier to determine
the suitable range of cutoff frequencies. We have not further expanded the production runs in
this example, to keep the computational cost low. Furthermore, as shown in the comparison
below, we already obtained a good agreement with the literature results and relatively small
uncertainties.

5.6.3 Comparison to Literature Results
Computational estimates of the bulk viscosity of a Lennard-Jones fluid can be found in [MLK04b].
Since the simulation settings (𝑟∗

cut = 2.5, 𝑁 = 1372, 𝑇 ∗ = 0.722 and 𝜌∗ = 0.8442) are identical to
those used in this notebook, the reported values should be directly comparable.

Method Simulation time [τ*] Bulk viscosity [η𝑏*] Reference

EMD NVE (STACIE) 10800 1.158 ± 0.030 (here) extension 1
EMD NVE (STACIE) 30000 1.191 ± 0.021 (here) extension 2
EMDNVE (Helfand-Einstein) 300000 1.186 ± 0.084 [MLK04b]

This comparison demonstrates that STACIE accurately reproduces bulk viscosity results while
achieving lower statistical uncertainty with significantly less data than existing methods.

Note that the results for only the initial NVE production run are not included because the sanity
checks indicated that the data was not sufficient.

5.6.4 Regression Tests
If you are experimenting with this notebook, you can ignore any exceptions below. The tests are
only meant to pass for the notebook in its original form.

if abs(eta_bulk_production - 1.195) > 0.1:
raise ValueError(f"wrong viscosity (production): {eta_bulk_production:.3e}")

5.7 Thermal Conductivity of a Lennard-Jones Liquid Near
the Triple Point (LAMMPS)

This example shows how to derive the thermal conductivity using heat flux data from a LAMMPS
simulation. It uses the same production runs and conventions as in the Shear viscosity example.
The required theoretical background is explained the section Thermal Conductivity.

Warning

A Lennard-Jones system only exhibits pairwise interactions, for which the LAMMPS command
compute/heat flux produces valid results. For systems with three- or higher-body interactions,
one cannot simply use the same command. Consult the theory section on thermal conductivity
for more background.

114 Chapter 5. Worked Examples

STACIE, Release 1.0

Note

The results in this example were obtained using LAMMPS 29 Aug 2024 Update 3. Minor differ-
ences may arise when using a different version of LAMMPS, or even the same version compiled
with a different compiler.

5.7.1 Library Imports and Configuration
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from path import Path
from yaml import safe_load
from stacie import (

UnitConfig,
compute_spectrum,
estimate_acint,
LorentzModel,
plot_fitted_spectrum,
plot_extras,

)

mpl.rc_file("matplotlibrc")
%config InlineBackend.figure_formats = ["svg"]

You normally do not need to change this path.
It only needs to be overridden when building the documentation.
DATA_ROOT = Path(os.getenv("DATA_ROOT", "./")) / "lammps_lj3d/sims/"

5.7.2 Analysis of the Production Simulations
The function estimate_thermal_conductivity implements the analysis, assuming the data have been
read from the LAMMPS outputs and are passed as function arguments.

def estimate_thermal_conductivity(name, jcomps, av_temperature, volume, timestep):
Create the spectrum of the heat flux fluctuations.
Note that the Boltzmann constant is 1 in reduced LJ units.
uc = UnitConfig(

acint_fmt=".3f",
acint_symbol="κ",
acint_unit_str="κ*",
freq_unit_str="1/τ*",
time_fmt=".3f",
time_unit_str="τ*",

)
spectrum = compute_spectrum(

jcomps,
prefactors=1 / (volume * av_temperature**2),
timestep=timestep,

)

(continues on next page)

5.7. Thermal Conductivity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS)115

https://github.com/lammps/lammps/releases/tag/stable_29Aug2024_update3

STACIE, Release 1.0

(continued from previous page)

Estimate the viscosity from the spectrum.
result = estimate_acint(spectrum, LorentzModel(), verbose=True, uc=uc)

Plot some basic analysis figures.
plt.close(f"{name}_spectrum")
_, ax = plt.subplots(num=f"{name}_spectrum")
plot_fitted_spectrum(ax, uc, result)
plt.close(f"{name}_extras")
_, axs = plt.subplots(2, 2, num=f"{name}_extras")
plot_extras(axs, uc, result)

Return the viscosity
return result.acint

The following cell implements the analysis of the production simulations.

def demo_production(npart: int = 3, ntraj: int = 100):
"""
Perform the analysis of the production runs.

Parameters

npart

Number of parts in the production runs.
For the initial production runs, this is 1.

ntraj
Number of trajectories in the production runs.

Returns

kappa

The estimated thermal conductivity.
"""
Load the configuration from the YAML file.
with open(DATA_ROOT / "replica_0000_part_00/info.yaml") as fh:

info = safe_load(fh)

Load trajectory data, without hardcoding the number of runs and parts.
thermos = []
heatfluxes = []
for itraj in range(ntraj):

thermos.append([])
heatfluxes.append([])
for ipart in range(npart):

prod_dir = DATA_ROOT / f"replica_{itraj:04d}_part_{ipart:02d}/"
thermos[-1].append(np.loadtxt(prod_dir / "nve_thermo.txt"))
heatfluxes[-1].append(np.loadtxt(prod_dir / "nve_heatflux_blav.txt"))

thermos = [np.concatenate(parts).T for parts in thermos]
heatfluxes = [np.concatenate(parts).T for parts in heatfluxes]

Compute the average temperature.
av_temperature = np.mean([thermo[1].mean() for thermo in thermos])

Compute the thermal conductivity.
(continues on next page)

116 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

Note that the last three columns are not used in the analysis.
According to the LAMMPS documentation, the last three columns
only contain the convective contribution to the heat flux.
See https:))docs.lammps.org/compute_heat_flux.html
jcomps = np.concatenate([heatflux[1:4] for heatflux in heatfluxes])
return estimate_thermal_conductivity(

f"part{npart}",
jcomps,
av_temperature,
info["volume"],
info["timestep"] * info["block_size"],

)

kappa_production = demo_production(3)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [1/τ*]

--------- ---------- ----------
15.0 inf 4.71e-02 (Variance of the correlation time estimate is too large.)
15.9 inf 5.01e-02 (Variance of the correlation time estimate is too large.)
16.9 inf 5.34e-02 (Variance of the correlation time estimate is too large.)
18.0 inf 5.68e-02 (Variance of the correlation time estimate is too large.)
19.1 inf 6.05e-02 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-6.75412020e-06, 4.43842256e-01, 2.55616450e+00]))
20.3 inf 6.44e-02 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-3.50407301e-06, 4.43068635e-01, 2.55693487e+00]))
21.6 inf 6.85e-02 (No correlation time estimate available.)
23.0 inf 7.30e-02 (No correlation time estimate available.)
24.4 inf 7.77e-02 (No correlation time estimate available.)
25.9 inf 8.27e-02 (No correlation time estimate available.)
27.6 inf 8.80e-02 (No correlation time estimate available.)
29.3 inf 9.37e-02 (No correlation time estimate available.)
31.2 inf 9.97e-02 (No correlation time estimate available.)
33.2 inf 1.06e-01 (No correlation time estimate available.)
35.3 inf 1.13e-01 (No correlation time estimate available.)
37.5 inf 1.20e-01 (No correlation time estimate available.)
39.9 inf 1.28e-01 (No correlation time estimate available.)
42.4 inf 1.36e-01 (No correlation time estimate available.)
45.1 inf 1.45e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-1.00541799e-04, 4.38053694e-01, 2.56204685e+00]))
48.0 inf 1.54e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-1.17919538e-04, 4.37106550e-01, 2.56301137e+00]))
51.1 inf 1.64e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-9.50267075e-05, 4.36440454e-01, 2.56365457e+00]))
54.4 inf 1.75e-01 (Variance of the correlation time estimate is too large.)
57.8 inf 1.86e-01 (Variance of the correlation time estimate is too large.)
61.5 inf 1.98e-01 (Variance of the correlation time estimate is too large.)
65.5 inf 2.11e-01 (Variance of the correlation time estimate is too large.)
69.7 inf 2.25e-01 (Variance of the correlation time estimate is too large.)
74.1 inf 2.39e-01 (Variance of the correlation time estimate is too large.)
78.9 inf 2.55e-01 (Variance of the correlation time estimate is too large.)
83.9 inf 2.71e-01 (Variance of the correlation time estimate is too large.)

(continues on next page)

5.7. Thermal Conductivity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS)117

STACIE, Release 1.0

(continued from previous page)

89.3 inf 2.89e-01 (Variance of the correlation time estimate is too large.)
95.0 inf 3.07e-01 (Variance of the correlation time estimate is too large.)

101.1 inf 3.27e-01 (Variance of the correlation time estimate is too large.)
107.6 inf 3.48e-01 (Variance of the correlation time estimate is too large.)
114.5 inf 3.70e-01 (Variance of the correlation time estimate is too large.)
121.9 inf 3.94e-01 (Variance of the correlation time estimate is too large.)
129.7 inf 4.20e-01 (Variance of the correlation time estimate is too large.)
138.0 inf 4.47e-01 (Variance of the correlation time estimate is too large.)
146.9 inf 4.76e-01 (Variance of the correlation time estimate is too large.)
156.3 inf 5.06e-01 (Variance of the correlation time estimate is too large.)
166.4 inf 5.39e-01 (Variance of the correlation time estimate is too large.)
177.1 inf 5.74e-01 (Variance of the correlation time estimate is too large.)
188.5 inf 6.11e-01 (Variance of the correlation time estimate is too large.)
200.6 inf 6.50e-01 (Variance of the correlation time estimate is too large.)
213.5 inf 6.92e-01 (Variance of the correlation time estimate is too large.)
227.2 inf 7.37e-01 (Variance of the correlation time estimate is too large.)
241.9 inf 7.84e-01 (Variance of the correlation time estimate is too large.)
257.4 inf 8.35e-01 (Variance of the correlation time estimate is too large.)
274.0 inf 8.89e-01 (Variance of the correlation time estimate is too large.)
291.6 -2.6 9.46e-01
310.4 -2.9 1.01e+00
330.4 -3.2 1.07e+00
351.7 -3.5 1.14e+00
374.3 -3.7 1.21e+00
398.4 -3.8 1.29e+00
424.1 -3.8 1.38e+00
451.4 -3.8 1.47e+00
480.5 -3.8 1.56e+00
511.5 -4.0 1.66e+00
544.4 -4.6 1.77e+00
579.5 -5.7 1.88e+00
616.9 -6.9 2.00e+00
656.6 -8.0 2.13e+00
698.9 -8.5 2.27e+00
744.0 -8.3 2.42e+00
791.9 -7.4 2.57e+00
843.0 -6.1 2.74e+00
897.3 -4.8 2.91e+00
955.1 -3.4 3.10e+00

1016.7 -1.2 3.30e+00
Reached the maximum number of effective points (1000).

INPUT TIME SERIES
Time step: 0.030 τ*
Simulation time: 300.000 τ*
Maximum degrees of freedom: 600.0

MAIN RESULTS
Autocorrelation integral: 6.936 ± 0.029 κ*
Integrated correlation time: 0.107 ± 0.000 τ*

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 702.7 (ideally > 60)
Regression cost Z-score: 2.2 (ideally < 2)

(continues on next page)

118 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

Cutoff criterion Z-score: 1.7 (ideally < 2)

MODEL lorentz(0.1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 2.28e+00 1/τ*
Exponential correlation time: 0.090 ± 0.001 τ*

RECOMMENDED SIMULATION SETTINGS (EXPONENTIAL CORR. TIME)
Block time: 0.028 ± 0.001 τ*
Simulation time: 5.625 ± 0.012 τ*

5.7. Thermal Conductivity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS)119

STACIE, Release 1.0

The exponential correlation time of the heat flux tensor fluctuations is five times shorter than
that of the pressure tensor fluctuations. This means that the thermal conductivity is a bit easier to
compute than the viscosity. Note that the selected block size is still compatible with this shorter
time scale.

Similarly to the bulk viscosity, the Z-scores are clearly positive. This could be for the same reasons
as in the bulk viscosity example. In addition, the block size of 0.03 τ* is slightly larger than the
recommended 0.028 τ*, meaning that the spectrum might be perturbed by (very) small aliasing
effects that could distort the fit.

5.7.3 Comparison to Literature Results
A detailed literature survey of computational estimates of the thermal conductivity of a Lennard-
Jones fluid can be found in [VSG07b]. Viscardi also computes new estimates, one of which is
included in the table below. This value can be directly comparable to the current notebook, be-
cause the settings are identical (𝑟∗

cut = 2.5, 𝑁 = 1372, 𝑇 ∗ = 0.722 and 𝜌∗ = 0.8442).

Method Simulation time
[τ*]

Thermal conductivity
[κ*]

Reference

EMD NVE (STACIE) 3600 6.837 ± 0.081 (here) initial
EMD NVE (STACIE) 10800 6.968 ± 0.046 (here) extension

1
EMD NVE (STACIE) 30000 6.936 ± 0.029 (here) extension

2
EMD NVE (Helfand-
moment)

600000 6.946 ± 0.12 [VSG07b]

This small comparison confirms that STACIE can reproduce a well-known thermal conductivity
result, with small error bars, while using much less trajectory data than existing methods.

120 Chapter 5. Worked Examples

STACIE, Release 1.0

5.7.4 Regression Tests
If you are experimenting with this notebook, you can ignore any exceptions below. The tests are
only meant to pass for the notebook in its original form.

if abs(kappa_production - 6.953) > 0.2:
raise ValueError(f"wrong thermal conductivity (production): {kappa_production:.3e}")

5.8 Ionic Electrical Conductivity of Molten Sodium Chloride
at 1100 K (OpenMM)

Warning

This example notebook is work in progress. There are still some issues with the MD results
obtained with OpenMM, which are discussed in the notebook.

This notebook shows how to post-process trajectories from OpenMM simulations to calculate
the ionic electrical conductivity. The OpenMM trajectories are converted to NPZ files within the
Jupyter Notebooks of the simulation, making the approach here easily adaptable to other codes
or physical systems. All OpenMM simulation notebooks can be found in the directory docs/data/
openmm_salt in STACIE’s source repository. The required theoretical background is explained the
Ionic Electrical Conductivity section.

The MD simulations are performed using the Born-Huggins-Mayer-Tosi-Fumi potential, which
is a popular choice for molten salts. [TF64] This potential does not use mixing rules and it is
not natively implemented in OpenMM, but it can be incorporated using the CustomNonbondedForce
and some creativity, see docs/data/openmm_salt/bhmft.py in the Git repository. The molten salt
was simulated with a 3D periodic box of 1728 ions (864 Na+ and 864 Cl−). The time step in all
simulations was 5 fs.

Following the Recommendations for MD Simulations, an initial block size of 10 steps (50 fs) was
used. Because there is little prior knowledge on the structure of the spectrum, the exponential
polynomial model (ExpPoly) with degrees 𝑆 = {0, 1} was used initially, i.e. with 𝑃 = 2 param-
eters. As explained in the section on block averages, 400𝑃 blocks were collected in the initial
production runs, amounting to 8000 steps (40 ps) of simulation time.

In total 100 NVE production runs were performed. For each run, the system was first equilibrated
in the NVT and later NPT ensemble. According to the section How to Prepare Sufficient Inputs for
STACIE? , 100 runs should be sufficient to obtain a relative error on the ionic conductivity of about
1%:

𝜖rel ≈ 1
√20𝑃 𝑀

≈ 0.0091

where 𝑃 is the number of parameters in the model and 𝑀 = 100×3 is the number of independent
input sequences. (100 trajectories, 3 Cartesian components of the charge current per trajectory)

Note

The results in this example were obtained using OpenMM 8.2.0. Minor differences may arise
when using a different version of OpenMM, or even the same version compiled with a different
compiler.

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 121

https://github.com/openmm/openmm/releases/tag/8.2.0

STACIE, Release 1.0

5.8.1 Library Imports and Configuration
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
from path import Path
import scipy.constants as sc
from scipy.stats import chi2
from stacie import (

ExpPolyModel,
PadeModel,
UnitConfig,
compute_spectrum,
estimate_acint,
plot_fitted_spectrum,
plot_extras,

)
from utils import plot_instantaneous_percentiles, plot_cumulative_temperature_histogram

mpl.rc_file("matplotlibrc")
%config InlineBackend.figure_formats = ["svg"]

You normally do not need to change this path.
It only needs to be overridden when building the documentation.
DATA_ROOT = Path(os.getenv("DATA_ROOT", "./")) / "openmm_salt/output/"

5.8.2 Analysis of the NpT Equilibration Runs
To validate that the equilibration runs have reached to proper temperature distribution, the fol-
lowing cell implements a plot of the percentiles (over the 100 trajectories) of a thermodynamic
quantity (temperature or volume).

def plot_openmm_percentiles(
ensemble: str,
field: str,
unitstr: str,
unit: float = 1,
npart: int = 1,
ntraj: int = 100,
expected: None = None,
ymin: float | None = None,
ymax: float | None = None,

):
"""Plot the temperature of the NpT equilibration runs."""
time = None
natom = None
sequences = []
time = None
for itraj in range(ntraj):

row = []
if itraj =) 0:

time = []
for ipart in range(npart):

(continues on next page)

122 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

path_npz = DATA_ROOT / f"sim{itraj:04d}_part{ipart:02d}_{ensemble}_traj.npz"
if not path_npz.exists():

print(f"File {path_npz} not found, skipping.")
row = None
break

data = np.load(path_npz)
natom = len(data["atnums"])
if itraj =) 0:

time.append(data["time"])
row.append(data[field])

if row is None:
continue

if itraj =) 0:
time = np.concatenate(time)

row = np.concatenate(row)
sequences.append(row)

sequences = np.array(sequences)

percents = np.array([95, 80, 50, 20, 5])
if field =) "temperature":

temp_d = 1100
ndof = 3 * natom - 3
expected = chi2.ppf(percents / 100, ndof) * temp_d / ndof
ymin = chi2.ppf(0.01, ndof) * temp_d / ndof
ymax = chi2.ppf(0.99, ndof) * temp_d / ndof

else:
expected = None

time_unit = 1e-12
num = f"percentiles_{field}_{ensemble}"
plt.close(num)
_, ax = plt.subplots(num=num)
plot_instantaneous_percentiles(

ax,
time / time_unit,
sequences / unit,
percents,
None if expected is None else expected / unit,
ymin,
ymax,

)
ax.set_title(f"{field.title()} percentiles during the {ensemble.upper()} run")
ax.set_xlabel("Time [ps]")
ax.set_ylabel(f"{field.title()} [{unitstr}]")

The following cell plots the temperature percentiles for the NVT and NPT equilibration runs.

plot_openmm_percentiles("nvt", "temperature", "K")
plot_openmm_percentiles("npt", "temperature", "K")

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 123

STACIE, Release 1.0

The percentiles look good for the equilibration runs: they quickly reach their theoretical values
(black dotted lines) and then fluctuate around them. The following cell plots the temperature
percentiles for the initial NVE production runs.

plot_openmm_percentiles("nve", "temperature", "K")

124 Chapter 5. Worked Examples

STACIE, Release 1.0

This is clearly not the correct temperature distribution! There is a known problem with restart
files in the NVE ensemble in OpenMM. Due to a bug, it tends to lower the temperature of the sys-
tem. More details on this issue can be found here: https://github.com/openmm/openmm/issues/
4948

The following cell plots the percentiles of the volume (over the 100 trajectories), which we can
only use to validate that the volume distribution converges. However, we cannot trivially compare
these percentiles to an expected distribution.

plot_openmm_percentiles("npt", "volume", "nm3", unit=1e-27, expected="last")

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 125

https://github.com/openmm/openmm/issues/4948
https://github.com/openmm/openmm/issues/4948

STACIE, Release 1.0

This plot is not completely satisfactory either, as it suggests that the volume fluctuations of the
100 runs exhibit synchronized fluctuations, while they should be independent. (They use different
random seeds for their MC Barostat.)

5.8.3 Reusable Code for the Analysis of the Production Runs
The analyze function takes a few parameters to apply the same analysis with STACIE to different
inputs (initial and extended production runs). After the analysis, it generates screen output and
figures as discussed in the minimal example.

BOLTZMANN_CONSTANT = sc.value("Boltzmann constant") # J/K

def analyze(model, npart: int = 1, ntraj: int = 100) -> float:
"""Analyze MD trajectories to compute the ionic conductivity.

Parameters

model

The model fitted to the spectrum.
npart

The number of parts in the simulation to load.
The default value of 1 corresponds to only loading the initial production runs.

Returns

acint

The estimated ionic conductivity, mainly used for regression testing.
"""
Get the time step from the first NPZ file.
time = np.load(DATA_ROOT / "sim0000_part00_nve_traj.npz")["time"]
timestep = time[1] - time[0]

def iter_sequences():
"""A generator that only loads one MD trajectory at a time in memory."""
for itraj in range(ntraj):

paths_npz = [
DATA_ROOT / f"sim{itraj:04d}_part{ipart:02d}_nve_traj.npz"
for ipart in range(npart)

]
if not all(path_npz.exists() for path_npz in paths_npz):

print(f"Some of {paths_npz} not found, skipping.")
continue

dipole = []
for path_npz in paths_npz:

data = np.load(path_npz)
dipole.append(data["dipole"])

dipole = np.concatenate(dipole, axis=1)
data = np.load(paths_npz[0])
prefactor = 1.0 / (

data["volume"][0] * data["temperature"].mean() * BOLTZMANN_CONSTANT
)
The finite difference is equivalent to a block-averaged charge current.
current = np.diff(dipole, axis=1) / timestep
yield prefactor, current

(continues on next page)

126 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

Configure units for output
uc = UnitConfig(

acint_symbol=r"\sigma",
acint_unit_str=r"S/m",
acint_fmt=".1f",
time_unit=1e-15,
time_unit_str="fs",
time_fmt=".3f",
freq_unit=1e12,
freq_unit_str="THz",

)

Perform the analysis with STACIE
spectrum = compute_spectrum(

iter_sequences(),
timestep=timestep,
prefactors=None,
include_zero_freq=False,

)
result = estimate_acint(spectrum, model, verbose=True, uc=uc)

Plot some basic analysis figures.
prefix = "conductivity"
plt.close(f"{prefix}_spectrum")
_, ax = plt.subplots(num=f"{prefix}_fitted")
plot_fitted_spectrum(ax, uc, result)
plt.close(f"{prefix}_extras")
_, axs = plt.subplots(2, 2, num=f"{prefix}_extras")
plot_extras(axs, uc, result)

Return the ionic conductivity.
return result.acint

5.8.4 Analysis of the Initial Production Simulation
The following cell computes the ionic conductivity of the molten salt at 1100 K, from the initial
production runs (8000 steps each).

conductivity_1_01 = analyze(ExpPolyModel([0, 1]))

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [THz]

--------- ---------- ----------
10.0 -30.5 2.56e-01
10.7 -30.6 2.73e-01
11.4 -30.7 2.90e-01
12.2 -30.7 3.09e-01
13.0 -30.7 3.29e-01
13.8 -30.7 3.50e-01
14.8 -30.6 3.73e-01
15.8 -30.6 3.97e-01
16.8 -30.5 4.22e-01

(continues on next page)

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 127

STACIE, Release 1.0

(continued from previous page)

17.9 -30.4 4.50e-01
19.1 -30.2 4.79e-01
20.4 -29.9 5.09e-01
21.7 -29.4 5.42e-01
23.2 -28.8 5.77e-01
24.7 -28.2 6.14e-01
26.3 -27.7 6.54e-01
28.0 -27.5 6.96e-01
29.9 -27.5 7.41e-01
31.8 -27.8 7.89e-01
33.9 -28.1 8.40e-01
36.1 -28.3 8.94e-01
38.5 -28.3 9.52e-01
41.0 -28.0 1.01e+00
43.7 -27.5 1.08e+00
46.5 -26.8 1.15e+00
49.6 -26.1 1.22e+00
52.8 -25.3 1.30e+00
56.2 -24.4 1.38e+00
59.9 -23.3 1.47e+00
63.8 -21.9 1.57e+00
67.9 -19.9 1.67e+00
72.4 -17.3 1.78e+00
77.1 -13.6 1.89e+00
82.1 -8.3 2.01e+00
87.4 -0.6 2.14e+00
93.1 10.8 2.28e+00
99.1 27.5 2.43e+00

105.5 52.4 2.59e+00
112.3 89.3 2.75e+00

Cutoff criterion exceeds incumbent + margin: -30.7 + 100.0.

INPUT TIME SERIES
Time step: 50.000 fs
Simulation time: 39950.000 fs
Maximum degrees of freedom: 600.0

MAIN RESULTS
Autocorrelation integral: 347.0 ± 10.9 S/m
Integrated correlation time: 25.116 ± 0.788 fs

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 15.6 (ideally > 40)
Regression cost Z-score: 0.1 (ideally < 2)
Cutoff criterion Z-score: -0.1 (ideally < 2)

MODEL exppoly(0, 1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 2
Average cutoff frequency: 3.94e-01 THz

/home/toon/univ/molmod/stacie/src/stacie/model.py:323: RuntimeWarning: overflow encountered␣
↪in exp
amplitudes_model = np.exp(np.dot(design_matrix, pars))

128 Chapter 5. Worked Examples

STACIE, Release 1.0

The analysis of the initial production runs shows that the trajectories are not yet sufficient for a
reliable interpretation of the autocorrelation integrals:

• Only 15 effective points are used for the fitting.

• The relative error is 3.1%, while higher than the coarse estimate of 0.9%, it is of the right
order of magnitude.

The extra plots reveal another reason for extending the MD simulations. The cutoff weight is
significant at the lowest cutoff frequency, suggesting that a finer grid with lower frequencies
could reveal new details. Hence, we extended the production runs by 8000 additional steps to

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 129

STACIE, Release 1.0

refine the frequency grid, of which the results are discussed in the following subsection.

5.8.5 Analysis of the Extended Production Simulation (8000 + 8000 steps)
We simply call the same analyze() function, but now with npart=2, which loads the initial produc-
tion runs and their first extension.

conductivity_2_01 = analyze(ExpPolyModel([0, 1]), npart=2)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [THz]

--------- ---------- ----------
10.0 -28.0 1.28e-01
10.7 -27.7 1.36e-01
11.4 -27.4 1.45e-01
12.2 -27.3 1.54e-01
13.0 -27.5 1.64e-01
13.8 -27.9 1.75e-01
14.8 -28.5 1.86e-01
15.8 -29.2 1.98e-01
16.8 -29.8 2.11e-01
17.9 -30.3 2.25e-01
19.1 -30.5 2.39e-01
20.4 -30.6 2.55e-01
21.7 -30.6 2.71e-01
23.2 -30.7 2.88e-01
24.7 -30.9 3.07e-01
26.3 -31.2 3.27e-01
28.0 -31.6 3.48e-01
29.9 -31.6 3.70e-01
31.8 -31.2 3.94e-01
33.9 -30.2 4.20e-01
36.1 -28.7 4.47e-01
38.5 -26.9 4.76e-01
41.0 -25.1 5.06e-01
43.7 -23.6 5.39e-01
46.5 -22.7 5.74e-01
49.6 -22.3 6.11e-01
52.8 -22.3 6.50e-01
56.2 -22.4 6.92e-01
59.9 -22.6 7.36e-01
63.8 -22.8 7.84e-01
67.9 -22.9 8.35e-01
72.4 -23.1 8.88e-01
77.1 -23.3 9.46e-01
82.1 -23.5 1.01e+00
87.4 -23.6 1.07e+00
93.1 -23.4 1.14e+00
99.1 -22.9 1.21e+00

105.5 -22.0 1.29e+00
112.3 -20.6 1.38e+00
119.6 -18.8 1.46e+00
127.4 -16.7 1.56e+00
135.6 -13.9 1.66e+00
144.4 -10.0 1.77e+00

(continues on next page)

130 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

153.7 -4.1 1.88e+00
163.7 5.1 2.00e+00
174.3 19.1 2.13e+00
185.6 40.9 2.27e+00
197.6 74.1 2.41e+00

Cutoff criterion exceeds incumbent + margin: -31.6 + 100.0.

INPUT TIME SERIES
Time step: 50.000 fs
Simulation time: 79950.000 fs
Maximum degrees of freedom: 600.0

MAIN RESULTS
Autocorrelation integral: 354.3 ± 8.0 S/m
Integrated correlation time: 25.671 ± 0.576 fs

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 25.7 (ideally > 40)
Regression cost Z-score: 0.6 (ideally < 2)
Cutoff criterion Z-score: -0.4 (ideally < 2)

MODEL exppoly(0, 1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 2
Average cutoff frequency: 3.19e-01 THz

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 131

STACIE, Release 1.0

The extended analysis shows that the results are starting to converge. However, the number of
fitted points is still only 26, which is relatively low. To get more robust results, we extended the
simulations once more. We added 184000 more steps, resulting in a simulation time of 1 ns for
each of the 100 trajectories.

5.8.6 Analysis of the Extended Production Simulation (8000 + 8000 +
184000 steps)

We simply call the same analyze() function, but now with npart=3, which loads the initial produc-
tion runs and their first and second extensions.

conductivity_3_01 = analyze(ExpPolyModel([0, 1]), npart=3)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [THz]

--------- ---------- ----------
10.0 -27.0 1.02e-02
10.7 -27.1 1.09e-02
11.4 -27.3 1.16e-02
12.2 -27.4 1.23e-02
13.0 -27.5 1.31e-02
13.8 -27.6 1.40e-02
14.8 -27.8 1.49e-02
15.8 -27.9 1.58e-02
16.8 -28.0 1.69e-02
17.9 -28.0 1.80e-02
19.1 -28.0 1.91e-02
20.4 -28.1 2.04e-02
21.7 -28.2 2.17e-02
23.2 -28.4 2.31e-02
24.7 -28.5 2.45e-02

(continues on next page)

132 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

26.3 -28.6 2.61e-02
28.0 -28.7 2.78e-02
29.9 -28.8 2.96e-02
31.8 -28.9 3.15e-02
33.9 -29.0 3.36e-02
36.1 -29.2 3.57e-02
38.5 -29.3 3.80e-02
41.0 -29.5 4.05e-02
43.7 -29.6 4.31e-02
46.5 -29.6 4.59e-02
49.6 -29.7 4.88e-02
52.8 -29.7 5.20e-02
56.2 -29.8 5.53e-02
59.9 -29.9 5.89e-02
63.8 -30.1 6.27e-02
67.9 -30.3 6.67e-02
72.4 -30.4 7.10e-02
77.1 -30.5 7.56e-02
82.1 -30.7 8.05e-02
87.4 -30.8 8.57e-02
93.1 -30.9 9.12e-02
99.1 -31.1 9.71e-02

105.5 -31.2 1.03e-01
112.3 -31.4 1.10e-01
119.6 -31.5 1.17e-01
127.4 -31.6 1.25e-01
135.6 -31.7 1.33e-01
144.4 -31.9 1.41e-01
153.7 -32.0 1.50e-01
163.7 -32.2 1.60e-01
174.3 -32.4 1.70e-01
185.6 -32.5 1.81e-01
197.6 -32.6 1.93e-01
210.3 -32.7 2.06e-01
223.9 -32.6 2.19e-01
238.4 -32.2 2.33e-01
253.8 -31.6 2.48e-01
270.2 -30.7 2.64e-01
287.7 -29.4 2.81e-01
306.3 -27.9 2.99e-01
326.0 -26.4 3.18e-01
347.1 -25.0 3.39e-01
369.5 -23.7 3.61e-01
393.4 -22.5 3.84e-01
418.8 -21.3 4.09e-01
445.8 -20.0 4.35e-01
474.6 -18.5 4.63e-01
505.3 -16.8 4.93e-01
537.9 -15.1 5.25e-01
572.6 -13.5 5.59e-01
609.6 -12.2 5.95e-01
648.9 -11.3 6.33e-01
690.8 -11.0 6.74e-01
735.4 -11.0 7.17e-01

(continues on next page)

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 133

STACIE, Release 1.0

(continued from previous page)

782.8 -11.2 7.64e-01
833.3 -11.5 8.13e-01
887.1 -11.7 8.65e-01
944.4 -11.6 9.21e-01

1005.3 -11.0 9.81e-01
Reached the maximum number of effective points (1000).

INPUT TIME SERIES
Time step: 50.000 fs
Simulation time: 999950.000 fs
Maximum degrees of freedom: 600.0

MAIN RESULTS
Autocorrelation integral: 352.9 ± 3.7 S/m
Integrated correlation time: 25.451 ± 0.264 fs

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 165.4 (ideally > 40)
Regression cost Z-score: 0.1 (ideally < 2)
Cutoff criterion Z-score: -0.3 (ideally < 2)

MODEL exppoly(0, 1) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 2
Average cutoff frequency: 1.62e-01 THz

134 Chapter 5. Worked Examples

STACIE, Release 1.0

The analysis of the full extended production runs leads to a modest improvement. However, the
utility of the first-order term of the model is questionable, given that the slope is nearly zero and
could go either way according to the confidence intervals of the model (green dashed curves).
Hence, we first test a constant (white noise) model to the first part of the spectrum:

conductivity_3_0 = analyze(ExpPolyModel([0]), npart=3)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [THz]

--------- ---------- ----------
5.0 -2.5 5.36e-03
5.4 -2.4 5.71e-03
5.7 -2.4 6.07e-03
6.1 -2.3 6.47e-03
6.6 -2.2 6.88e-03
7.0 -2.1 7.33e-03
7.5 -2.1 7.80e-03
8.0 -2.2 8.30e-03
8.6 -2.3 8.84e-03
9.1 -2.4 9.41e-03
9.8 -2.5 1.00e-02
10.4 -2.6 1.07e-02
11.1 -2.7 1.13e-02
11.9 -2.7 1.21e-02
12.7 -2.8 1.29e-02
13.5 -2.8 1.37e-02
14.4 -2.9 1.46e-02
15.4 -2.9 1.55e-02
16.4 -2.9 1.65e-02
17.5 -3.0 1.76e-02
18.7 -3.0 1.87e-02
19.9 -3.1 1.99e-02

(continues on next page)

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 135

STACIE, Release 1.0

(continued from previous page)

21.2 -3.1 2.12e-02
22.6 -3.2 2.26e-02
24.1 -3.2 2.40e-02
25.7 -3.2 2.56e-02
27.4 -3.1 2.72e-02
29.2 -3.1 2.90e-02
31.1 -3.0 3.08e-02
33.2 -2.9 3.28e-02
35.4 -2.8 3.50e-02
37.7 -2.7 3.72e-02
40.1 -2.6 3.96e-02
42.7 -2.6 4.22e-02
45.5 -2.7 4.49e-02
48.5 -2.7 4.78e-02
51.7 -2.7 5.09e-02
55.0 -2.8 5.41e-02
58.6 -2.9 5.76e-02
62.4 -3.0 6.13e-02
66.5 -3.2 6.53e-02
70.8 -3.3 6.95e-02
75.4 -3.4 7.40e-02
80.3 -3.6 7.88e-02
85.5 -3.7 8.38e-02
91.1 -3.8 8.93e-02
97.0 -3.8 9.50e-02

103.2 -3.9 1.01e-01
109.9 -3.9 1.08e-01
117.1 -4.0 1.15e-01
124.6 -4.0 1.22e-01
132.7 -4.0 1.30e-01
141.3 -4.0 1.38e-01
150.4 -4.1 1.47e-01
160.2 -4.1 1.57e-01
170.5 -4.1 1.67e-01
181.6 -4.1 1.77e-01
193.3 -4.0 1.89e-01
205.8 -4.0 2.01e-01
219.1 -3.9 2.14e-01
233.3 -3.7 2.28e-01
248.4 -3.3 2.43e-01
264.4 -2.7 2.58e-01
281.5 -1.7 2.75e-01
299.7 0.0 2.93e-01
319.1 2.8 3.12e-01
339.7 7.0 3.32e-01
361.6 13.2 3.53e-01
385.0 22.0 3.76e-01
409.8 34.1 4.00e-01
436.3 50.2 4.26e-01
464.4 71.6 4.53e-01
494.4 99.8 4.82e-01

Cutoff criterion exceeds incumbent + margin: -4.1 + 100.0.

INPUT TIME SERIES
(continues on next page)

136 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

Time step: 50.000 fs
Simulation time: 999950.000 fs
Maximum degrees of freedom: 600.0

MAIN RESULTS
Autocorrelation integral: 353.4 ± 3.8 S/m
Integrated correlation time: 25.486 ± 0.271 fs

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 100.0 (ideally > 20)
Regression cost Z-score: 0.6 (ideally < 2)
Cutoff criterion Z-score: -0.4 (ideally < 2)

MODEL exppoly(0) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 1
Average cutoff frequency: 9.80e-02 THz

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 137

STACIE, Release 1.0

Another model to consider is the Pade model, not because we expect the ACF to decay expo-
nentially, but because it features well-behaved high-frequency limits, which can facilitate the
regression.

conductivity_3_p = analyze(PadeModel([0, 2], [2]), npart=3)

CUTOFF FREQUENCY SCAN cv2l(125%)
neff criterion fcut [THz]

--------- ---------- ----------
15.0 inf 1.51e-02 (cv2l: Linear dependencies in basis. evals=array([1.

↪63889329e-06, 1.02817551e-03, 2.99897019e+00]))
16.0 inf 1.61e-02 (cv2l: Linear dependencies in basis. evals=array([1.

↪13716711e-06, 7.92211478e-04, 2.99920665e+00]))
17.1 inf 1.71e-02 (cv2l: Linear dependencies in basis. evals=array([7.

↪86089625e-07, 6.12365220e-04, 2.99938685e+00]))
18.2 inf 1.82e-02 (cv2l: Linear dependencies in basis. evals=array([5.

↪42866962e-07, 4.75274695e-04, 2.99952418e+00]))
19.4 inf 1.94e-02 (cv2l: Linear dependencies in basis. evals=array([3.

↪76196721e-07, 3.69469427e-04, 2.99963015e+00]))
20.7 inf 2.06e-02 (cv2l: Linear dependencies in basis. evals=array([2.

↪59666420e-07, 2.89088199e-04, 2.99971065e+00]))
22.0 inf 2.20e-02 (cv2l: Linear dependencies in basis. evals=array([1.

↪80689157e-07, 2.27594112e-04, 2.99977223e+00]))
23.5 inf 2.34e-02 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-2.74279924e-05, 4.30590654e-01, 2.56943677e+00]))
25.0 -89.1 2.49e-02
26.7 -89.7 2.65e-02
28.4 -90.2 2.82e-02
30.3 -90.3 3.00e-02
32.3 -90.0 3.20e-02
34.4 -89.9 3.40e-02
36.7 -89.8 3.62e-02

(continues on next page)

138 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

39.1 -89.7 3.86e-02
41.6 -89.4 4.11e-02
44.3 -89.2 4.37e-02
47.2 -89.0 4.65e-02
50.3 -88.7 4.95e-02
53.6 -88.4 5.27e-02
57.1 -88.0 5.61e-02
60.8 -87.6 5.97e-02
64.7 -87.1 6.36e-02
68.9 -86.7 6.77e-02
73.4 -86.3 7.21e-02
78.2 -85.9 7.67e-02
83.3 -85.5 8.17e-02
88.7 -85.1 8.69e-02
94.4 -84.7 9.25e-02

100.5 -84.2 9.85e-02
107.1 -83.7 1.05e-01
114.0 -83.3 1.12e-01
121.4 -82.9 1.19e-01
129.2 -82.5 1.26e-01
137.6 -82.1 1.35e-01
146.5 -81.6 1.43e-01
156.0 inf 1.53e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-1.54359370e-06, 4.41366618e-01, 2.55863493e+00]))
166.1 inf 1.62e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-1.49142797e-06, 4.41582231e-01, 2.55841926e+00]))
176.8 inf 1.73e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-2.91330612e-06, 4.41639799e-01, 2.55836311e+00]))
188.3 inf 1.84e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-8.02534064e-06, 4.41998992e-01, 2.55800903e+00]))
200.4 inf 1.96e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-1.49369521e-05, 4.42334093e-01, 2.55768084e+00]))
213.4 inf 2.09e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-2.27159654e-05, 4.42747757e-01, 2.55727496e+00]))
227.2 inf 2.22e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-2.87488075e-05, 4.43190437e-01, 2.55683831e+00]))
241.9 inf 2.36e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-4.04863273e-05, 4.43778776e-01, 2.55626171e+00]))
257.5 inf 2.52e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-4.33777791e-05, 4.44331986e-01, 2.55571139e+00]))
274.2 inf 2.68e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-4.06989167e-05, 4.44918800e-01, 2.55512190e+00]))
291.9 inf 2.85e-01 (opt: Hessian matrix has non-positive eigenvalues:␣

↪evals=array([-2.40531661e-05, 4.45570259e-01, 2.55445379e+00]))
310.7 -102.2 3.03e-01
330.8 -102.7 3.23e-01
352.2 -103.3 3.44e-01
374.9 -103.9 3.66e-01
399.1 -104.4 3.90e-01
424.9 -104.9 4.15e-01
452.3 -105.3 4.41e-01
481.5 -105.7 4.70e-01
512.6 -105.8 5.00e-01
545.7 -105.9 5.32e-01

(continues on next page)

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 139

STACIE, Release 1.0

(continued from previous page)

580.9 -105.9 5.67e-01
618.4 -105.8 6.03e-01
658.4 -105.9 6.42e-01
700.9 -106.2 6.84e-01
746.1 -106.8 7.28e-01
794.2 -107.5 7.75e-01
845.5 -108.0 8.25e-01
900.1 -108.2 8.78e-01
958.1 -107.9 9.35e-01

1020.0 -107.4 9.95e-01
Reached the maximum number of effective points (1000).

INPUT TIME SERIES
Time step: 50.000 fs
Simulation time: 999950.000 fs
Maximum degrees of freedom: 600.0

MAIN RESULTS
Autocorrelation integral: 349.9 ± 1.3 S/m
Integrated correlation time: 25.232 ± 0.091 fs

SANITY CHECKS (weighted averages over cutoff grid)
Effective number of points: 829.1 (ideally > 60)
Regression cost Z-score: -0.5 (ideally < 2)
Cutoff criterion Z-score: -0.1 (ideally < 2)

MODEL pade(0, 2; 2) | CUTOFF CRITERION cv2l(125%)
Number of parameters: 3
Average cutoff frequency: 8.09e-01 THz

140 Chapter 5. Worked Examples

STACIE, Release 1.0

This is indeed a successful regression, with 829 effective points for a three-parameter model. The
relative error estimate on the final result is 0.37%.

5.8.7 Density
To enable a proper comparisonwith the experimental and other simulation results, we also need to
estimate the density of the system. This is done by averaging the density over the NpT trajectories
from the production runs.

def estimate_density(ntraj: int = 100):
densities = []
molar_vols = []
masses = {11: 22.990, 17: 35.45} # g/mol
avogadro = 6.02214076e23 # 1/mol
for itraj in range(ntraj):

path_npz = DATA_ROOT / f"sim{itraj:04d}_part00_npt_traj.npz"
if not path_npz.exists():

print(f"File {path_npz} not found, skipping.")
continue

data = np.load(path_npz)
mass = sum(masses[atnum] for atnum in data["atnums"]) / avogadro
volume = data["volume"] * 10**6 # from m³ to cm³
densities.append(mass / volume)
molar_vols.append(2 * avogadro * volume / len(data["atnums"]) / 2)

density = np.mean(densities)
print(f"Mass density: {density:.3f} ± {np.std(densities):.3f} g/cm³")
print(f"Molar volume: {np.mean(molar_vols):.4f} ± {np.std(molar_vols):.4f} cm³/mol")
return density

density = estimate_density()

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 141

STACIE, Release 1.0

Mass density: 1.454 ± 0.014 g/cm³
Molar volume: 20.1042 ± 0.1977 cm³/mol

5.8.8 Comparison to Literature Results
Transport properties for this system are challenging to compute accurately. Consequently, simu-
lation results from the literature may exhibit some variation. While the results should be broadly
comparable to some extent, deviations may arise due to the differences in post-processing tech-
niques, and the absence of reported error bars in some studies. Furthermore, in [WSLY14] smaller
simulation cells were used (512 ions instead of 1728), which may also contribute to discrepancies.

In the table below, we included some more results obtained with STACIE than those discussed
above. We also computed the conductivity with the Pade model for all cases, which was a better
choice in retrospect.

Ensemble Simulated time [ns] Density [g/cm3] Conductivity [S/m] Reference

NpT+NVE 4 1.454 ± 0.014 347 ± 10.9 init expoly(0,1)
NpT+NVE 8 1.454 ± 0.014 354 ± 8.0 ext1 expoly(0,1)
NpT+NVE 100 1.454 ± 0.014 353 ± 3.7 ext2 expoly(0,1)
NpT+NVE 100 1.454 ± 0.014 353 ± 3.8 ext2 expoly(0)
NpT+NVE 4 1.454 ± 0.014 343 ± 5.4 init pade(0, 2; 2)
NpT+NVE 8 1.454 ± 0.014 346 ± 3.7 ext1 pade(0, 2; 2)
NpT+NVE 100 1.454 ± 0.014 349 ± 1.3 ext2 pade(0, 2; 2)
NpT+NVT 6 1.456 348 ± 7 [WDZ+20]
NpT+NVT > 5 1.444 ≈ 310 [WSLY14]
Experi-
ment

N.A. 1.542 ± 0.006 366 ± 3 [JDL+68] [BH61]

The comparison shows that the results obtained with STACIE align reasonably well with the lit-
erature. In terms of statistical efficiency, STACIE achieves comparable or smaller error bars for
about the same simulation time. The deviation from experiment is attributed to the approxima-
tions in the NaCl potential. [WDZ+20]

Finally, this example also shows why transport properties can be difficult to compute. As more
data is collected, a more detailed spectrum is obtained. Simple models can struggle to explain the
increasing amount of information. When extending the total simulation time from 8 ns to 100 ns,
the effective number of points in the fit does not grow accordingly. As a result, the uncertainties
decrease rather slowly with increasing simulation time.

5.8.9 Technical Details of the Analysis of the Literature Data
References for the experimental data:

• Density [JDL+68]

• Ionic conductivity [JDL+68]

The following cell converts a molar ionic conductivity from the literature back to a conductivity.

def convert_molar_conductivity():
"""Convert a specific conductance to a conductivity."""
Parameters taken from Wang 2020 (https:))doi.org/10.1063/5.0023225)
and immediately converted to SI units
molar_conductivity = 140 * 1e-4 # S m²/mol

(continues on next page)

142 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

molar_conductivity_std = 3 * 1e-4 # S m²/mol
density = 1.456 * 1e3 # kg/m³
molar_mass = (22.990 + 35.45) * 1e-3 # kg/mol
molar_volume = molar_mass / density # m³/mol
conductivity = molar_conductivity / molar_volume
conductivity_std = molar_conductivity_std / molar_volume
print("Conductivity [S/m]", conductivity)
print("Conductivity std [S/m]", conductivity_std)

convert_molar_conductivity()

Conductivity [S/m] 348.8021902806297
Conductivity std [S/m] 7.474332648870638

5.8.10 Validation of the Production Runs
To further establish that our NVE runs together represent the NpT ensemble, the following two
cells perform additional validation checks.

• A plot of the conserved quantity of the separate NVE runs, to detect any drift.

• The distribution of the instantaneous temperature, which should match the desired NpT
distribution. For each individual NVE run and for the combined NVE runs, cumulative dis-
tributions are plotted. The function also plots the expected cumulative distribution of the
NpT ensemble.

def plot_total_energy(npart: int = 3, ntraj: int = 100):
time = None
energies = []
for itraj in range(ntraj):

if itraj =) 0:
time = []

energies_traj = []
for ipart in range(npart):

path_npz = DATA_ROOT / f"sim{itraj:04d}_part{ipart:02d}_nve_traj.npz"
if not path_npz.exists():

print(f"File {path_npz} not found, skipping.")
continue

data = np.load(path_npz)
if itraj =) 0:

time.append(data["time"])
energies_traj.append(data["total_energy"])

if itraj =) 0:
time = np.concatenate(time)

energies.append(np.concatenate(energies_traj))

num = "total_energy"
plt.close(num)
_, ax = plt.subplots(num=num)
for energies_traj in energies:

plt.plot(time, energies_traj)
plt.title("Total energy of the NVE production runs")
plt.xlabel("Time [ps]")

(continues on next page)

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 143

STACIE, Release 1.0

(continued from previous page)

plt.ylabel("Total energy [kJ/mol]")

plot_total_energy()

There is no noticeable drift in the total energy of the NVE runs. Apart from the usual (and ac-
ceptable) numerical noise, the total energy is conserved perfectly.

def plot_temperature_production(npart: int = 3, ntraj: int = 100):
"""Plot cumulative distributions of the instantaneous temperature."""
Load the temperature data from the NVE production runs.
natom = None
temps = []
for itraj in range(ntraj):

temps.append([])
for ipart in range(npart):

path_npz = DATA_ROOT / f"sim{itraj:04d}_part{ipart:02d}_nve_traj.npz"
if not path_npz.exists():

print(f"File {path_npz} not found, skipping.")
continue

data = np.load(path_npz)
natom = len(data["atnums"])
temps[-1].append(data["temperature"])

temps = np.array([np.concatenate(t) for t in temps])

Plot the instantaneous and desired temperature distribution.
plt.close("tempprod")
_, ax = plt.subplots(num="tempprod")
ndof = 3 * natom - 3
temp_d = 1100
plot_cumulative_temperature_histogram(ax, temps, temp_d, ndof, "K")

(continues on next page)

144 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

plot_temperature_production()

Alas, as mentioned above, there is still a small mismatch between the obtained and expected NVT
temperature distributions. This notebook will be updated after OpenMM issue #4948 has been
resolved.

5.8.11 Regression Tests
If you are experimenting with this notebook, you can ignore any exceptions below. The tests are
only meant to pass for the notebook in its original form.

if abs(conductivity_1_01 - 347) > 10:
raise ValueError(f"wrong conductivity (production): {conductivity_1_01:.0f}")

if abs(conductivity_2_01 - 354) > 8:
raise ValueError(f"wrong conductivity (production): {conductivity_2_01:.0f}")

if abs(conductivity_3_01 - 353) > 7:
raise ValueError(f"wrong conductivity (production): {conductivity_3_01:.0f}")

if abs(conductivity_3_0 - 353) > 5:
raise ValueError(f"wrong conductivity (production): {conductivity_3_0:.0f}")

if abs(conductivity_3_p - 349) > 3:
raise ValueError(f"wrong conductivity (production): {conductivity_3_p:.0f}")

if abs(density - 1.449) > 0.02:
raise ValueError(f"wrong density (production): {density:.3f}")

Some notebooks also use helper functions from the utils.py module.

5.8. Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM) 145

https://github.com/openmm/openmm/issues/4948

STACIE, Release 1.0

5.9 Utility Module for Plots Reused in Multiple Examples.
import matplotlib.pyplot as plt
import numpy as np
from numpy.typing import ArrayLike, NDArray
from scipy.stats import chi2

__all__ = (
"plot_instantaneous_percentiles",
"plot_cumulative_temperature_histogram",

)

def plot_instantaneous_percentiles(
ax: plt.Axes,
time: NDArray[float],
data: NDArray[float],
percents: ArrayLike,
expected: ArrayLike | None = None,
ymin: float | None = None,
ymax: float | None = None,

):
"""Plot time-dependent percentiles of a data set.

Parameters

ax

The axes to plot on.
time

The time points corresponding to the data.
data

The data to plot. It should be a 2D array with shape (nsample, nstep).
percents

The percentages for which to plot the percentiles.
expected

The expected values to plot as horizontal lines.
ymin

Y-axis lower limit.
ymax

Y-axis upper limit.
"""
for percent, percentile in zip(percents, np.percentile(data, percents, axis=0)):

ax.plot(time, percentile, label=f"{percent} %")
if expected is not None:

for value in expected:
ax.axhline(value, color="black", linestyle=":")

ax.set_ylim(bottom=ymin, top=ymax)
ax.set_title("Percentiles during the equilibration run")
ax.legend()

def plot_cumulative_temperature_histogram(
ax: plt.Axes,

(continues on next page)

146 Chapter 5. Worked Examples

STACIE, Release 1.0

(continued from previous page)

temps: NDArray[float],
temp_d: float,
ndof: int,
temp_unit_str: str,
nbin: int = 100,

):
"""Plot a cumulative histogram of the temperature.

Parameters

ax

The axes to plot on.
temps

The temperature data to plot.
This is expected to be a 2D array with shape (ntraj, nstep).
Cumulative histograms of individual trajectories will be plotted,
together with the combined and theoretical cumulative histogram.

temp_d
The desired temperature for the theoretical cumulative histogram.

ndof
The number of degrees of freedom for the system.

temp_unit_str
A string representing the unit of temperature.

nbin
The number of bins for the histogram.

"""
label = "Individual NVE"
quantiles = (np.arange(nbin) + 0.5) / nbin
for temp in temps:

temp.sort()
ax.plot(

np.quantile(temp, quantiles),
quantiles,
alpha=0.2,
color="C0",
label=label,

)
label = "__nolegend__"

ax.plot(
np.quantile(temps, quantiles),
quantiles,
color="black",
label="Combined NVE",

)
temp_axis = np.linspace(np.min(temps), np.max(temps), 100)
ax.plot(

temp_axis,
chi2.cdf(temp_axis * ndof / temp_d, ndof),
color="C3",
ls=":",
lw=4,
label="NVT exact",

)
ax.legend()

(continues on next page)

5.9. Utility Module for Plots Reused in Multiple Examples. 147

STACIE, Release 1.0

(continued from previous page)

ax.set_title("Cumulative Distribution of the Instantaneous Temperature")
ax.set_xlabel(f"Temperature [{temp_unit_str}]")
ax.set_ylabel("Cumulative Probability")

In addition to the worked examples in STACIE’s documentation, we also recommend checking
out the AutoCorrelation Integral Drill (ACID) Test Set, with which we have validated STACIE’s
performance:

• ACID GitHub repository: https://github.com/molmod/acid

• ACID Zenodo archive: https://doi.org/10.5281/zenodo.15722903

148 Chapter 5. Worked Examples

https://github.com/molmod/acid
https://doi.org/10.5281/zenodo.15722903

CHAPTER 6

References

[AW70] B. J. Alder and T. E. Wainwright. Decay of the velocity autocorrelation function. Phys.
Rev. A, 1(1):18–21, 1970. doi:10.1103/physreva.1.18.

[AT17] Michael P. Allen and Dominic J. Tildesley. Computer Simulation of Liq-
uids (second edition). Oxford University Press, 2017. ISBN 9780198803195.
doi:10.1093/oso/9780198803195.001.0001.

[BUNO22] Hiromi Baba, Ryo Urano, Tetsuro Nagai, and Susumu Okazaki. Prediction of self-
diffusion coefficients of chemically diverse pure liquids by all-atom molecular dynamics
simulations. J. Comput. Chem., 43(28):1892–1900, 2022. doi:10.1002/jcc.26975.

[Bar80] M. S. Bartlett. Introduction to Stochastic Processes With Special Reference to Methods and
Applications. Cambridge University Press, 1980. ISBN 9780521215855.

[BS13] Joseph E. Basconi and Michael R. Shirts. Effects of temperature control algorithms on
transport properties and kinetics inmolecular dynamics simulations. J. Chem. Theory Com-
put., 9(7):2887–2899, 2013. doi:10.1021/ct400109a.

[BH61] J. O'M. Bockris and G. W. Hooper. Self-diffusion in molten alkali halides. Discuss. Faraday
Soc., 32:218–236, 1961. doi:10.1039/DF9613200218.

[BBW19] Paul Boone, Hasan Babaei, and Christopher E. Wilmer. Heat flux for many-body inter-
actions: corrections to lammps. J. Chem. Theory Comput., 15(10):5579–5587, August 2019.
URL: http://dx.doi.org/10.1021/acs.jctc.9b00252, doi:10.1021/acs.jctc.9b00252.

[Bos96] Georgi N. Boshnakov. Bartlett's formulae—closed forms and recurrent equations. Ann.
Inst. Stat. Math., 48(1):49–59, 1996. doi:10.1007/bf00049288.

[DE94] Peter J. Daivis and Denis J. Evans. Comparison of constant pressure and constant volume
nonequilibrium simulations of sheared model decane. J. Chem. Phys., 100(1):541–547, 1994.
doi:10.1063/1.466970.

[EMB17] Loris Ercole, Aris Marcolongo, and Stefano Baroni. Accurate thermal conductiv-
ities from optimally short molecular dynamics simulations. Sci. Rep., 7:15835, 2017.
doi:10.1038/s41598-017-15843-2.

[FMP12] George S. Fanourgakis, J. S. Medina, and R. Prosmiti. Determining the bulk viscosity of
rigid water models. J. Phys. Chem. A, 116(10):2564–2570, March 2012. URL: http://dx.doi.
org/10.1021/jp211952y, doi:10.1021/jp211952y.

149

https://doi.org/10.1103/physreva.1.18
https://doi.org/10.1093/oso/9780198803195.001.0001
https://doi.org/10.1002/jcc.26975
https://doi.org/10.1021/ct400109a
https://doi.org/10.1039/DF9613200218
http://dx.doi.org/10.1021/acs.jctc.9b00252
https://doi.org/10.1021/acs.jctc.9b00252
https://doi.org/10.1007/bf00049288
https://doi.org/10.1063/1.466970
https://doi.org/10.1038/s41598-017-15843-2
http://dx.doi.org/10.1021/jp211952y
http://dx.doi.org/10.1021/jp211952y
https://doi.org/10.1021/jp211952y

STACIE, Release 1.0

[FZ09] Christian Francq and Jean-Michel Zakoïan. Bartlett's formula for a general class of nonlin-
ear processes. J. Time Analysis, 30(4):449–465, 2009. doi:10.1111/j.1467-9892.2009.00623.x.

[FS02] Daan Frenkel and Berend Smit. Understanding Molecular Simulation. Elsevier, 2002. ISBN
9780122673511. doi:10.1016/b978-0-12-267351-1.x5000-7.

[FC70] R. Friedberg and J. E. Cameron. Test of the monte carlo method: fast simulation of a small
ising lattice. J. Chem. Phys., 52(12):6049–6058, 1970. doi:10.1063/1.1672907.

[Fue26] E. Fues. Das eigenschwingungsspektrum zweiatomiger moleküle in der undulations-
mechanik. Ann. Phys., 385(12):367–396, 1926. doi:10.1002/andp.19263851204.

[Ful95] W.A. Fuller. Introduction to Statistical Time Series. Wiley, 1995. ISBN 9780471552390.

[GB19] Federico Grasselli and Stefano Baroni. Topological quantization and gauge invariance of
charge transport in liquid insulators. Nat. Phys., 15(9):967–972, 2019. doi:10.1038/s41567-
019-0562-0.

[Gre52] Melville S. Green. Markoff random processes and the statistical mechanics of time-
dependent phenomena. J. Chem. Phys., 20(8):1281–1295, 1952. doi:10.1063/1.1700722.

[Gre54] Melville S. Green. Markoff random processes and the statistical mechanics of time-
dependent phenomena. ii. irreversible processes in fluids. J. Chem. Phys., 22(3):398–413,
1954. doi:10.1063/1.1740082.

[HM13] Jean-Pierre Hansen and Ian R. McDonald. Theory of Simple Liquids (Fourth Edition). Aca-
demic Press, 2013. ISBN 978-0-12-387032-2. doi:10.1016/B978-0-12-387032-2.00013-1.

[Hel60] Eugene Helfand. Transport coefficients from dissipation in a canonical ensemble. Phys.
Rev., 119(1):1–9, 1960. doi:10.1103/physrev.119.1.

[JWB+19] Seyed Hossein Jamali, Ludger Wolff, Tim M. Becker, Mariëtte de Groen, Mahinder
Ramdin, Remco Hartkamp, André Bardow, Thijs J. H. Vlugt, and Othonas A. Moultos.
Octp: a tool for on-the-fly calculation of transport properties of fluids with the order-
nalgorithm in lammps. J. Chem. Inf. Model., 59(4):1290–1294, February 2019. URL: http:
//dx.doi.org/10.1021/acs.jcim.8b00939, doi:10.1021/acs.jcim.8b00939.

[JDL+68] G J Janz, F W Dampier, G R Lakshminarayanan, P K Lorenz, and R P T Tomkins. Molten
salts ::volume 1. electrical conductance, density, and viscosity data. 1968-01-01 05:01:00
1968. doi:10.6028/NBS.NSRDS.15.

[KGL+22] Qia Ke, Xiaoting Gong, Shouwei Liao, Chongxiong Duan, and Libo Li. Effects of ther-
mostats/barostats on physical properties of liquids by molecular dynamics simulations. J.
Mol. Liq., 365:120116, November 2022. URL: http://dx.doi.org/10.1016/j.molliq.2022.120116,
doi:10.1016/j.molliq.2022.120116.

[Kra20] A. Kratzer. Die ultraroten rotationsspektren der halogenwasserstoffe. Z. Phys., 3(5):289–
307, 1920. doi:10.1007/bf01327754.

[Kub57] RyogoKubo. Statistical-mechanical theory of irreversible processes. i. general theory and
simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 12(6):570–586,
1957. doi:10.1143/JPSJ.12.570.

[Mac05] David J.C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge
University Press, 2005. ISBN 9780521642989.

[MMC+20] Edward J.Maginn, RichardA.Messerly, Daniel J. Carlson, Daniel R. Roe, and J. Richard
Elliot. Best practices for computing transport properties 1. self-diffusivity and viscosity
from equilibrium molecular dynamics [article v1.0]. Living J. Comput. Mol. Sci., 2(1):6324,
2020. doi:10.33011/livecoms.1.1.6324.

[MLK04a] Karsten Meier, Arno Laesecke, and Stephan Kabelac. Transport coefficients of
the lennard-jones model fluid. i. viscosity. J. Chem. Phys., 121(8):3671–3687, 2004.
doi:10.1063/1.1770695.

150 Bibliography

https://doi.org/10.1111/j.1467-9892.2009.00623.x
https://doi.org/10.1016/b978-0-12-267351-1.x5000-7
https://doi.org/10.1063/1.1672907
https://doi.org/10.1002/andp.19263851204
https://doi.org/10.1038/s41567-019-0562-0
https://doi.org/10.1038/s41567-019-0562-0
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1740082
https://doi.org/10.1016/B978-0-12-387032-2.00013-1
https://doi.org/10.1103/physrev.119.1
http://dx.doi.org/10.1021/acs.jcim.8b00939
http://dx.doi.org/10.1021/acs.jcim.8b00939
https://doi.org/10.1021/acs.jcim.8b00939
https://doi.org/10.6028/NBS.NSRDS.15
http://dx.doi.org/10.1016/j.molliq.2022.120116
https://doi.org/10.1016/j.molliq.2022.120116
https://doi.org/10.1007/bf01327754
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.33011/livecoms.1.1.6324
https://doi.org/10.1063/1.1770695

STACIE, Release 1.0

[MLK04b] Karsten Meier, Arno Laesecke, and Stephan Kabelac. Transport coefficients of the
lennard-jones model fluid. iii. bulk viscosity. J. Chem. Phys., December 2004. URL: http:
//dx.doi.org/10.1063/1.1828040, doi:10.1063/1.1828040.

[MFF23] Luís Fernando Mercier Franco and Abbas Firoozabadi. Computation of shear vis-
cosity by a consistent method in equilibrium molecular dynamics simulations: ap-
plications to 1-decene oligomers. J. Phys. Chem. B, 127(46):10043–10051, 2023.
doi:10.1021/acs.jpcb.3c04994.

[Mil11] Russel B. Millar. Maximum Likelihood Estimation and Inference With Examples in R, SAS
and ADMB. John Wiley & Sons, 2011. ISBN 978-0-470-09482-2.

[OSB99] A.V. Oppenheim, R.W. Schafer, and J.R. Buck. Discrete-time Signal Processing. Prentice
Hall, 1999. ISBN 9780137549207.

[PDGB25] Paolo Pegolo, Enrico Drigo, Federico Grasselli, and Stefano Baroni. Transport co-
efficients from equilibrium molecular dynamics. J. Chem. Phys., February 2025. URL:
http://dx.doi.org/10.1063/5.0249677, doi:10.1063/5.0249677.

[Pri82] M B Priestley. Spectral analysis and time series, two-volume set: Volume 1-2. Academic
Press, October 1982. ISBN 9780125649223.

[RW05] Carl Edward Rasmussen and Christopher K I Williams. Gaussian processes for machine
learning. MIT Press, November 2005. ISBN 0-262-18253-X.

[RS08] G. Rowlands and J. C. Sprott. A simple diffusion model showing anomalous scaling. Phys.
Plasmas, 2008. doi:10.1063/1.2969429.

[SSWZ20] Yunqi Shao, Keisuke Shigenobu, Masayoshi Watanabe, and Chao Zhang. Role of vis-
cosity in deviations from the nernst–einstein relation. J. Phys. Chem. B, 124(23):4774–4780,
2020. doi:10.1021/acs.jpcb.0c02544.

[SS17] R.H. Shumway and D.S. Stoffer. Time Series Analysis and Its Applications: With R Examples.
Springer International Publishing, 2017. ISBN 9783319524528.

[Sok97] A. Sokal. Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms,
pages 131–192. Springer US, Boston, MA, 1997. doi:10.1007/978-1-4899-0319-8_6.

[SMKO19] Donatas Surblys, Hiroki Matsubara, Gota Kikugawa, and Taku Ohara. Application of
atomic stress to compute heat flux via molecular dynamics for systems with many-body
interactions. Phys. Rev., May 2019. URL: http://dx.doi.org/10.1103/PhysRevE.99.051301,
doi:10.1103/physreve.99.051301.

[SMKO21] Donatas Surblys, Hiroki Matsubara, Gota Kikugawa, and Taku Ohara. Method-
ology and meaning of computing heat flux via atomic stress in systems with con-
straint dynamics. J. Appl. Phys., December 2021. URL: http://dx.doi.org/10.1063/5.0070930,
doi:10.1063/5.0070930.

[TF64] M.P. Tosi and F.G. Fumi. Ionic sizes and born repulsive parameters in the nacl-type alkali
halides—ii: the generalized huggins-mayer form. J. Phys. Chem. Solids, 25(1):45–52, 1964.
doi:10.1016/0022-3697(64)90160-X.

[Tuc23] Mark E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. Oxford Uni-
versity Press, 2023. ISBN 9780198825562. doi:10.1093/oso/9780198825562.001.0001.

[VSG07a] S. Viscardy, J. Servantie, and P. Gaspard. Transport and helfand moments in
the lennard-jones fluid. i. shear viscosity. J. Chem. Phys., 126(18):184512, 2007.
doi:10.1063/1.2724820.

[VSG07b] S. Viscardy, J. Servantie, and P. Gaspard. Transport and helfand moments in
the lennard-jones fluid. ii. thermal conductivity. J. Chem. Phys., 126(18):184513, 2007.
doi:10.1063/1.2724821.

Bibliography 151

http://dx.doi.org/10.1063/1.1828040
http://dx.doi.org/10.1063/1.1828040
https://doi.org/10.1063/1.1828040
https://doi.org/10.1021/acs.jpcb.3c04994
http://dx.doi.org/10.1063/5.0249677
https://doi.org/10.1063/5.0249677
https://doi.org/10.1063/1.2969429
https://doi.org/10.1021/acs.jpcb.0c02544
https://doi.org/10.1007/978-1-4899-0319-8_6
http://dx.doi.org/10.1103/PhysRevE.99.051301
https://doi.org/10.1103/physreve.99.051301
http://dx.doi.org/10.1063/5.0070930
https://doi.org/10.1063/5.0070930
https://doi.org/10.1016/0022-3697(64)90160-X
https://doi.org/10.1093/oso/9780198825562.001.0001
https://doi.org/10.1063/1.2724820
https://doi.org/10.1063/1.2724821

STACIE, Release 1.0

[WDZ+20] Haimeng Wang, Ryan S. DeFever, Yong Zhang, Fei Wu, Santanu Roy, Vyacheslav S.
Bryantsev, Claudio J. Margulis, and Edward J. Maginn. Comparison of fixed charge and
polarizable models for predicting the structural, thermodynamic, and transport properties
of molten alkali chlorides. J. Chem. Phys., 153(21):214502, 12 2020. doi:10.1063/5.0023225.

[WSLY14] Jia Wang, Ze Sun, Guimin Lu, and Jianguo Yu. Molecular dynamics simulations of
the local structures and transport coefficients of molten alkali chlorides. J. Phys. Chem. B,
118(34):10196–10206, 2014. doi:10.1021/jp5050332.

[YH04] In-Chul Yeh and Gerhard Hummer. System-size dependence of diffusion coefficients and
viscosities from molecular dynamics simulations with periodic boundary conditions. J.
Phys. Chem. B, 108(40):15873–15879, 2004. doi:10.1021/jp0477147.

[ZZF22] Lili Zhao, Minna Zhi, and Gernot Frenking. The strength of a chemical bond. Int. J.
Quantum Chem., 122(8):e26773, 2022. doi:10.1002/qua.26773.

152 Bibliography

https://doi.org/10.1063/5.0023225
https://doi.org/10.1021/jp5050332
https://doi.org/10.1021/jp0477147
https://doi.org/10.1002/qua.26773

CHAPTER 7

Glossary

ACF
Autocorrelation function. A measure of the correlation of a signal with itself at different
time lags.

LAMMPS
Large-scale atomic/molecular massively parallel simulator. A software package for simulat-
ing molecular dynamics. See https://www.lammps.org/

MD
Molecular dynamics. A computational method used to simulate the physical movements of
atoms and molecules.

NpT
Isothermal-isobaric ensemble. A statistical ensemble that represents a system in thermal
equilibrium with a heat bath at constant temperature (T), pressure (p), and number of parti-
cles (N).

NVE
Microcanonical ensemble. A statistical ensemble that represents a closed system with fixed
energy (E), volume (V), and number of particles (N).

NVT
Canonical ensemble. A statistical ensemble that represents a system in thermal equilibrium
with a heat bath at constant temperature (T), volume (V), and number of particles (N).

Uncertainty
An estimate of the standard deviation of a result if the analysis would have been repeated
many times with independent inputs. This is also known as the standard error.

PSD
Power spectral density. A measure of the power of a signal as a function of frequency. The
Fourier transform of the autocorrelation function.

153

STACIE, Release 1.0

154 Chapter 7. Glossary

CHAPTER 8

Development

This section contains some technical details about the development of STACIE.

8.1 Contributor Guide

This contributor guide is created with the following template: nayafia/contributing-
template.

First of all, thank you for considering contributing to STACIE! STACIE is being developed by
academics who also have many other responsibilities, and you are probably in a similar situation.
The purpose of this guide is to make efficient use of everyone’s time.

STACIE has already been used for production simulations, but we are always open to (suggestions
for) improvements that fit within the goals of STACIE. New worked examples that are not too
computationally demanding are also highly appreciated! Even simple things like correcting typos
or fixing minor mistakes are welcome.

This section does not document how to use of Git and GitHub, or how to develop software in
general. We assume that you already have the basic skills to contribute. Below are some links to
documentation for those who are not familiar with these technicalities yet.

8.1.1 Ground Rules
• We want everyone to have a positive experience with their (online) interactions related to
STACIE’s development. Our expectations for (online) communication are outlined in the
Code of Conduct.

• Except for minor corrections, we encourage you to open a GitHub issue before making
changes to the source code. A transparent discussion before making changes can save a
lot of time. Also if you have found a potential problem but are not sure how to fix it, we
encourage you to open an issue.

• When you contribute, you accept that your contributions will be distributed under the same
licenses that we currently use for source code and documentation.

155

https://github.com/nayafia/contributing-template
https://github.com/nayafia/contributing-template

STACIE, Release 1.0

8.1.2 How to Report a Bug
Create a new issue (or find an existing one) and include the following information:

1. What version of STACIE, Python and NumPy are you using?

2. What operating system and processor architecture are you using?

3. What did you do?

4. What did you expect to see?

5. What did you see instead?

8.1.3 First-Time Contributors
If you have never contributed to an open source project before, you may find the following online
references helpful:

• http://makeapullrequest.com/

• http://www.firsttimersonly.com/

• https://egghead.io/series/how-to-contribute-to-an-open-source-project-on-github

If something goes wrong in the process of creating a pull request, we’ll try to help out.

8.1.4 Contribution Workflow
Contributing to STACIE always involves the following steps:

1. Create an issue on GitHub to discuss your plans.

2. Fork the STACIE repository on GitHub.

3. Clone the original repository on your computer and add your fork as a second remote.

4. Install pre-commit.

5. Create a new branch. (Do not commit changes to the main branch.)

6. Make changes to the source code. New features must have unit tests and documentation.

7. Make sure all the tests pass, the documentation builds without errors or warnings, and pre-
commit reports no problems.

8. Push your branch to your fork and Create a pull request on GitHub. In the pull request
message (not the title), mention which issue the pull request addresses.

9. Wait for your changes to be reviewed and handle all requests for improvements during the
review process.

10. If your change is accepted, it will be merged into the main branch and included in the next
release of STACIE.

8.2 Development Setup

8.2.1 Repository, Tests and Documentation Build
It is assumed that you have previously installed Python, Git, pre-commit and direnv. A local
installation for testing and development can be installed as follows:

156 Chapter 8. Development

http://makeapullrequest.com/
http://www.firsttimersonly.com/
https://egghead.io/series/how-to-contribute-to-an-open-source-project-on-github
https://pre-commit.com/

STACIE, Release 1.0

git clone git@github.com:molmod/stacie.git
cd stacie
pre-commit install
python -m venv venv
echo 'source venv/bin/activate' > .envrc
direnv allow
pip install -U pip
pip install -e .[docs,tests]
pytest -vv
cd docs
./compile_html.sh
./compile_pdf.sh

8.2.2 Documentation Live Preview
The documentation is created using Sphinx.

Edit the documentation Markdown files with a live preview by running the following command
in the root of the repository:

cd docs
./preview_html.sh

Keep this running. This will print a URL in the terminal that you open in your browser to preview
the documentation. Now you can edit the documentation and see the result as soon as you save
a file.

Please, use Semantic Line Breaks as it facilitates reviewing documentation changes.

8.3 Changelog
All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Effort-based Versioning.

8.3.1 Unreleased
8.3.2 1.0.0 - 2025-06-26
This is the first stable release of STACIE!

Changed

• Metadata and citation updates

8.3.3 1.0.0rc1 - 2025-06-25
This is the first release candidate of STACIE, with a final release expected very soon. The main
remaining issues are related to (back)linking of external resources in the documentation and
README files.

8.3. Changelog 157

https://www.sphinx-doc.org/
https://sembr.org/
https://keepachangelog.com/en/1.1.0/
https://jacobtomlinson.dev/effver/

STACIE, Release 1.0

8.4 How to Make a Release

8.4.1 Software packaging and deployment
• Mark the release in docs/changelog.md.

• Make a new commit and tag it with vX.Y.Z.

• Trigger the PyPI GitHub Action: git push origin main --tags.

8.4.2 Documentation build and deployment
Take the following steps, starting from the root of the repository:

cd docs
./clean.sh
./compile_html.sh
cd ..
git checkout gh-pages
git rm -rf .
cp -r docs/build/html/) docs/build/html/.gitignore docs/build/html/.nojekyll .
git add .
git status
git commit --amend -m "Documentation update" -n
git push origin gh-pages --force
git checkout main

8.5 Application Programming Interface

8.5.1 stacie package
Submodules

stacie.conditioning module

Cost function pre-conditioning.

class ConditionedCost(cost, par_scales, cost_scale)
Bases: object

A wrapper for the cost function taking care of pre-conditioning.

The goal of the pre-conditioner is to let the optimizer work with normalized parameters, and
to scale the cost function to a normalized range, such that all quantities are close to 1, even
if the spectra and the frequencies have very different orders of magnitude.

Parameters

• cost (Callable[[ndarray[tuple[Any, ...], dtype[float]], int],
list[ndarray[tuple[Any, ...], dtype[float]]]])

• par_scales (ndarray[tuple[Any, ...], dtype[float]])

• cost_scale (float)

158 Chapter 8. Development

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

cost: Callable[[ndarray[tuple[Any, ...], dtype[float]], int], list[ndarray[tuple[Any,
...], dtype[float]]]]

cost_scale: float

from_reduced(pars)
Convert parameters from the reduced to the original space.

Parameters
pars (ndarray[tuple[Any, ...], dtype[float]]) – The parameters to convert, in the
reduced space.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Returns
pars_orig – The parameters in the original space.

funcgrad(pars)
Compute the cost function and the gradient.

Parameters
pars (ndarray[tuple[Any, ...], dtype[float]]) – The parameters, in the reduced
space.

Return type
tuple[float, ndarray[tuple[Any, ...], dtype[float]]]

Returns
cost_reduced – The cost normalized function value.

hess(pars)
Compute the Hessian matrix of the cost function.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Parameters
pars (ndarray[tuple[Any, ...], dtype[float]])

par_scales: ndarray[tuple[Any, ...], dtype[float]]

to_reduced(pars)
Convert parameters from the original to the reduced space.

Parameters
pars (ndarray[tuple[Any, ...], dtype[float]]) – The parameters to convert, in the
original space.

Return type
ndarray[tuple[Any, ...], dtype[float]]

8.5. Application Programming Interface 159

https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

Returns
pars_reduced – The parameters in the reduced space.

stacie.cost module

Cost function to optimize models for the low-frequency part of the spectrum.

class LowFreqCost(freqs, ndofs, amplitudes, weights, model)
Bases: object

Cost function to fit a model to the low-frequency part of the spectrum.

Parameters

• freqs (ndarray[tuple[Any, ...], dtype[float]])

• ndofs (ndarray[tuple[Any, ...], dtype[int]])

• amplitudes (ndarray[tuple[Any, ...], dtype[float]])

• weights (ndarray[tuple[Any, ...], dtype[float]])

• model (SpectrumModel)

amplitudes: ndarray[tuple[Any, ...], dtype[float]]
The actual spectrum amplitudes at frequencies in self.freqs.

expected(pars)
Compute the expected value and variance of the cost function.

Parameters
pars (ndarray[tuple[Any, ...], dtype[float]]) – The model parameters. Vectoriza-
tion is not supported yet.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Returns
expected, variance – The expected value and variance of the cost function.

freqs: ndarray[tuple[Any, ...], dtype[float]]
The frequencies for which the spectrum amplitudes are computed.

model: SpectrumModel
The model to be fitted to the spectrum.

ndofs: ndarray[tuple[Any, ...], dtype[int]]
The number of independent contributions to each spectrum amplitude.

weights: ndarray[tuple[Any, ...], dtype[float]]
The fitting weights for each grid point.

entropy_gamma(alpha, theta, * (Keyword-only parameters separator (PEP 3102)), deriv=0)
Compute the entropy of the Gamma distribution.

160 Chapter 8. Development

https://docs.python.org/3/library/functions.html#object
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

Parameters

• alpha (ndarray[tuple[Any, ...], dtype[float]]) – The shape parameter.

• theta (ndarray[tuple[Any, ...], dtype[float]]) – The scale parameter.

• deriv (int) – The order of the derivatives toward theta to compute: 0, 1 or 2.

Returns
results – A list of results (function value and requested derivatives.) All elements
have the same shape as the alpha and theta arrays.

logpdf_gamma(x, alpha, theta, *, deriv=0)
Compute the logarithm of the probability density function of the Gamma distribu-
tion.

Parameters

• x (ndarray[tuple[Any, ...], dtype[float]]) – The argument of the PDF (random
variable). Array with shape (nfreq,).

• alpha (ndarray[tuple[Any, ...], dtype[float]]) – The shape parameter. Array with
shape (nfreq,).

• theta (ndarray[tuple[Any, ...], dtype[float]]) – The scale parameter. Array with
shape (...)), nfreq,).

• deriv (int) – The order of the derivatives toward theta to compute: 0, 1 or 2.

Returns
results – A list of results (function value and requested derivatives.) All elements
have the same shape as the theta array.

varlogp_gamma(alpha)
Compute the variance of the log-probability density function of the Gamma distribu-
tion.

Parameters
alpha (ndarray[tuple[Any, ...], dtype[float]]) – The shape parameter.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Returns
var – The variance of the log-probability density function. Array with shape
(alpha,).

stacie.cutoff module

Criteria for selecting the part of the spectrum to fit to.

class CV2LCriterion(*, fcut_factor=1.25, log=False, cond=1000000.0, precondition=True,
regularize=True)

Bases: CutoffCriterion

Criterion based on the difference between fits to two halves of the spectrum.

8.5. Application Programming Interface 161

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

Parameters

• fcut_factor (float)

• log (bool)

• cond (float)

• precondition (bool)

• regularize (bool)

cond: float
The threshold for the condition number of the preconditioned covariance matrix.

Due to the preconditioning, the condition number should be close to 1.0. If not, the
linear dependence of the parameters is too strong, making the fit unreliable. In this
case, “inf” is returned as the criterion.

fcut_factor: float
The scale factor to apply to the cutoff frequency.

If 1.0, the same part of the spectrum is used as in the full non-linear regression. By
using a larger value, the default, the criterion also tests whether the fitted parameters
can (somewhat) extrapolate to larger frequencies, which reduces the risk of underfitting.
This results in less bias on the autocorrelation integral, but slightly larger variance.

log: bool
Whether to fit a linearized model to the logarithm of the spectrum.

property name: str
The name of the criterion.

precondition: bool
Whether to precondition the covariance eigendecomposition.

This option is only disabled for testing. Always leave it enabled in production.

regularize: bool
Whether to regularize the linear regression.

This option is only disabled for testing. Always leave it enabled in production. It will
only have an impact on very ill-conditioned fits.

class CutoffCriterion
Bases: object

Base class for cutoff criteria.

Subclasses should implement the __call__ method.

property name: str
The name of the criterion.

linear_weighted_regression(dm, ev, ws, lc=None, ridge=0.0)
Perform a linear regression with multiple weight vectors.

This is a helper function for cv2l_criterion.

162 Chapter 8. Development

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

STACIE, Release 1.0

Parameters

• dm (ndarray[tuple[Any, ...], dtype[float]]) – The design matrix. Shape (neq,
npar), where neq is the number of equations and npar is the number of param-
eters.

• ev (ndarray[tuple[Any, ...], dtype[float]]) – The expected values, with standard
normal measurement errors. Shape (neq,).

• ws (ndarray[tuple[Any, ...], dtype[float]]) – A set of weight vectors for the rows
of dm (equations). Shape (nw, neq), where nw is the number of weight vectors.

• lc (ndarray[tuple[Any, ...], dtype[float]] | None) – Linear combinations of solu-
tions for different weights to be computed. Shape (nlc, nw), where nlc is the
number of linear combinations. If None, the identity matrix is used with shape
(nw, nw).

• ridge (float)

Return type
tuple[ndarray[tuple[Any, ...], dtype[float]], ndarray[tuple[Any, ...], dtype[float]]]

Returns
• xs – The regression coefficients for each weight vector. Shape (nw, npar).

• cs – The covariance matrices for each combination of weight vector. Shape (nw,
npar, nw, npar).

switch_func(x, cutoff , exponent)
Evaluate the switching function at a given points x.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Parameters

• x (ndarray[tuple[Any, ...], dtype[float]])

• cutoff (float)

• exponent (float)

stacie.estimate module

Algorithm to estimate the autocorrelation integral.

class Result(spectrum, model, cutoff_criterion, props, history)
Bases: object

Container class holding all the results of the autocorrelation integral estimate.

Parameters

• spectrum (Spectrum)

• model (SpectrumModel)

8.5. Application Programming Interface 163

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object

STACIE, Release 1.0

• cutoff_criterion (CutoffCriterion)

• props (dict[str])

• history (list[dict[str]])

property acint: float
The autocorrelation integral.

property acint_std: float
The uncertainty of the autocorrelation integral.

property corrtime_exp: float
The exponential correlation time.

property corrtime_exp_std: float
The uncertainty of the exponential correlation time.

property corrtime_int: float
The integrated correlation time.

property corrtime_int_std: float
The uncertainty of the integrated correlation time.

cutoff_criterion: CutoffCriterion
The criterion used to select or weight cutoff frequencies.

property fcut: int
The weighted average of the cutoff frequency.

history: list[dict[str]]
History of the cutoff optimization.

Each item is a dictionary returned by fit_model_spectrum(), containing the intermediate
results of the fitting process. They are sorted from low to high cutoff frequency.

model: SpectrumModel
The model used to fit the low-frequency part of the spectrum.

property ncut: int
The number of points where the fitting weight is larger than 1/1000.

property neff: int
The weighted average of the effective number of frequencies used in the fit.

props: dict[str]
The properties marginalized over the ensemble of cutoff frequencies.

Properties of this class derive their results from information in this dictionary. See doc-
string of fit_model_spectrum() for details.

spectrum: Spectrum
The input spectrum from which the autocorrelation integral is estimated.

estimate_acint(spectrum, model, *, neff_min=None, neff_max=1000, fcut_min=None,
fcut_max=None, fcut_spacing=0.5, switch_exponent=8.0, cutoff_criterion=None,
rng=None, nonlinear_budget=100, criterion_high=100, verbose=False, uc=None)

Estimate the integral of the autocorrelation function.

It is recommended to leave the keyword arguments to their default values, except formethod-
ological testing.

164 Chapter 8. Development

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

STACIE, Release 1.0

This function fits a model to the low-frequency portion of the spectrum and derives an es-
timate of the autocorrelation (and its uncertainty) from the fit. It repeats this for a range
of cutoff frequencies on a logarithmic grid. Finally, an ensemble average over all cutoffs is
computed, by using -np.log of the cutoff criterion as weight.

The cutoff frequency grid is logarithmically spaced, with the ratio between two successive
cutoff frequencies given by

𝑓𝑘+1
𝑓𝑘

= exp(𝑔sp/𝛽)

where 𝑔sp is fcut_spacing and 𝛽 is switch_exponent.

Parameters

• spectrum (Spectrum) – The power spectrum and related metadata, used as inputs
for the estimation of the autocorrelation integral. This object can be prepared
with the function: stacie.spectrum.compute_spectrum().

• model (SpectrumModel) – The model used to fit the low-frequency part of the
spectrum.

• neff_min (int | None) – The minimum effective number of frequency data points
to include in the fit. (The effective number of points is the sum of weights in
the smooth cutoff.) If not provided, this is set to 5 times the number of model
parameters as a default.

• neff_max (int | None) – Themaximum number of effective points to include in the
fit. This parameter limits the total computational cost. Set to None to disable
this stopping criterion.

• fcut_min (float | None) – The minimum cutoff frequency to use. If given, this
parameter can only increase the minimal cutoff derived from neff_min.

• fcut_max (float | None) – If given, cutoffs beyond this maximum are not consid-
ered.

• fcut_spacing (float) – Dimensionless parameter that controls the spacing be-
tween cutoffs in the grid.

• switch_exponent (float) – Controls the sharpness of the cutoff. Lower values
lead to a smoother cutoff, and require fewer cutoff grid points. Higher values
sharpen the cutoff, reveal more details, but a finer cutoff grid.

• cutoff_criterion (CutoffCriterion | None) – The criterion function that is mini-
mized to find the best cutoff frequency and, consequently, the optimal number
of points included in the fit. If not given, the default is an instance of stacie.
cutoff.CV2LCriterion.

• rng (Generator | None) – A random number generator for sampling guesses of the
nonlinear parameters. If not provided, np.random.default_rng(42) is used. The
seed is fixed by default for reproducibility.

• nonlinear_budget (int) – The number of samples used for the nonlinear param-
eters, calculated as nonlinear_budget *) num_nonlinear.

• criterion_high (float) – An high increase in the cutoff criterion value, used to
terminate the search for the cutoff frequency.

• verbose (bool) – Set this to True to print progress information of the frequency
cutoff search to the standard output.

8.5. Application Programming Interface 165

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

STACIE, Release 1.0

• uc (UnitConfig | None) – Unit configuration object used to format the screen out-
put. If not provided, the default unit configuration is used. See stacie.utils.
UnitConfig for details. This only affects the screen output (if any) and not the
results!

Return type
Result

Returns
result – The inputs, intermediate results and outputs or the algorithm.

fit_model_spectrum(spectrum, model, fcut, switch_exponent, cutoff_criterion, rng,
nonlinear_budget)

Optimize the parameter of a model for a given spectrum and cutoff frequency.

Parameters

• spectrum (Spectrum) – The spectrum object containing the input data.

• model (SpectrumModel) – The model to be fitted to the spectrum.

• fcut (float) – The cutoff frequency (in frequency units) used to construct the
weights.

• switch_exponent (float) – Controls the sharpness of the cutoff. Lower values
lead to a smoother cutoff. Higher values sharpen the cutoff.

• cutoff_criterion (CutoffCriterion) – The criterion function that is minimized to
find the optimal cutoff (and thus determine the number of points to include in
the fit).

• rng (Generator) – A random number generator for sampling guesses of the non-
linear parameters.

• nonlinear_budget (int) – The number of samples to use for the nonlinear param-
eters is nonlinear_budget *) num_nonlinear

Return type
dict[str, ndarray[tuple[Any, ...], dtype[TypeVar(_ScalarT, bound= generic)]] | float]

Returns
props – A dictionary containing various intermediate results of the cost function
calculation, computed for the optimized parameters. See Notes for details.

Notes

The returned dictionary contains the following items if the fit succeeds:

• acint: estimate of the autocorrelation integral

• acint_var: variance of the estimate of the autocorrelation integral

• acint_std: standard error of the estimate of the autocorrelation integral

• cost_value: cost function value

• cost_grad: cost Gradient vector (if deriv>)1)

• cost_hess: cost Hessian matrix (if deriv=)2)

• cost_hess_scales: Hessian rescaling vector, see robust_posinv.

166 Chapter 8. Development

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

• cost_hess_rescaled_evals: Rescaled Hessian eigenvalues

• cost_hess_rescaled_evecs: Rescaled hessian eigenvectors

• cost_expected: expected value of the cost function

• cost_var: expected variance of the cost function

• cost_zscore: z-score of the cost function

• switch_exponent: exponent used to construct the cutoff

• criterion: value of the criterion whose minimizer determines the frequency cutoff

• criterion_expected: expected value of the criterion

• criterion_var: expected variance of the criterion

• criterion_zscore: z-score of the criterion

• ll: log likelihood

• pars_init: initial guess of the parameters

• pars: optimized parameters

• pars_covar: covariance matrix of the parameters

If the model can derive the exponential correlation time, The following properties are also
included:

• corrtime_exp: exponential correlation time, the slowest time scale in the sequences

• corrtime_exp_var: variance of the estimated exponential correlation time

• corrtime_exp_std: standard error of the estimated exponential correlation time

• exp_simulation_time: recommended simulation time based on the exponential correlation
time

• exp_block_time: recommended block time based on the exponential correlation time

The ExpPolyModel has the following additional properties:

• log_acint: the logarithm of the autocorrelation integral

• log_acint_var: variance of the logarithm of the autocorrelation integral

• log_acint_std: standard error of the logarithm of the autocorrelation integral

If the fit fails, the following properties are set:

• criterion: infinity

• msg: error message

summarize_results(res, uc=None)
Return a string summarizing the Result object.

Parameters

• res (Result | list[Result])

• uc (UnitConfig | None)

8.5. Application Programming Interface 167

https://docs.python.org/3/library/stdtypes.html#list

STACIE, Release 1.0

stacie.model module

Models to fit the low-frequency part of the spectrum.

class ExpPolyModel(degrees)
Bases: SpectrumModel

Exponential function of a linear combination of simple monomials.

Parameters
degrees (ndarray[tuple[Any, ...], dtype[int]])

bounds()
Return parameter bounds for the optimizer.

Return type
list[tuple[float, float]]

compute(freqs, pars, *, deriv=0)
See SpectrumModel.compute().

Return type
list[ndarray[tuple[Any, ...], dtype[float]]]

Parameters

• freqs (ndarray[tuple[Any, ...], dtype[float]])

• pars (ndarray[tuple[Any, ...], dtype[float]])

• deriv (int)

degrees: ndarray[tuple[Any, ...], dtype[int]]
The degree of the monomials.

derive_props(pars, covar)
Return autocorrelation integral (and other properties) derived from the parame-
ters.

Return type
dict[str, ndarray[tuple[Any, ...], dtype[float]]]

Parameters

• pars (ndarray[tuple[Any, ...], dtype[float]])

• covar (ndarray[tuple[Any, ...], dtype[float]])

get_par_nonlinear()
Return a boolean mask for the nonlinear parameters.

168 Chapter 8. Development

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

Return type
ndarray[tuple[Any, ...], dtype[bool]]

property name

property npar
Return the number of parameters.

property par_scales: ndarray[tuple[Any, ...], dtype[float]]
Return the scales of the parameters and the cost function.

solve_linear(freqs, ndofs, amplitudes, weights, nonlinear_pars)
Use linear linear regression to solve a subset of the parameters.

This is a specialized implementation that rewrites the problem in a different form to
solve all parameters with a linear regression.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Parameters

• freqs (ndarray[tuple[Any, ...], dtype[float]])

• ndofs (ndarray[tuple[Any, ...], dtype[float]])

• amplitudes (ndarray[tuple[Any, ...], dtype[float]])

• weights (ndarray[tuple[Any, ...], dtype[float]])

• nonlinear_pars (ndarray[tuple[Any, ...], dtype[float]])

class LorentzModel(relerr_threshold=0.1)
Bases: PadeModel

A model for the spectrum with a Lorentzian peak at zero frequency plus some white noise.

This is a special case of the PadeModel with numer_degrees = [0, 2] and denom_degrees = [2].
Furthermore, it will only accept parameters that correspond to a well-defined exponential
correlation time.

Parameters
relerr_threshold (float)

denom_degrees: ndarray[tuple[Any, ...], dtype[int]]
The degrees of the monomials in the denominator.

Note that the leading term is always 1, and there is no need to include degree zero.

derive_props(pars, covar)
Return autocorrelation integral (and other properties) derived from the parameters.

The exponential correlation time is derived from the parameters, if possible. If not, or if
the variance of the estimate is too large, the “criterion” is set to infinity and the “msg”
is set accordingly, to discard the current fit from the average over the cutoff frequen-
cies.

8.5. Application Programming Interface 169

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int

STACIE, Release 1.0

Return type
dict[str, ndarray[tuple[Any, ...], dtype[float]]]

Parameters

• pars (ndarray[tuple[Any, ...], dtype[float]])

• covar (ndarray[tuple[Any, ...], dtype[float]])

property name

numer_degrees: ndarray[tuple[Any, ...], dtype[int]]
The degrees of the monomials in the numerator.

relerr_threshold: float
A threshold for the relative error on the exponential correlation time.

The relative error is defined as ratio of the standard deviation to the mean of the corre-
lation time.

To accept the current cutoff frequency, the relative error must be below this threshold.
This eliminates high-variance cases for which the maximum a posteriori estimate tends
to be a poor approximation.

class PadeModel(numer_degrees, denom_degrees)
Bases: SpectrumModel

A rational function model for the spectrum, a.k.a. a Padé approximation.

Parameters

• numer_degrees (ndarray[tuple[Any, ...], dtype[int]])

• denom_degrees (ndarray[tuple[Any, ...], dtype[int]])

bounds()
Return parameter bounds for the optimizer.

Return type
list[tuple[float, float]]

compute(freqs, pars, *, deriv=0)
See SpectrumModel.compute().

Return type
list[ndarray[tuple[Any, ...], dtype[float]]]

Parameters

• freqs (ndarray[tuple[Any, ...], dtype[float]])

• pars (ndarray[tuple[Any, ...], dtype[float]])

• deriv (int)

170 Chapter 8. Development

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

STACIE, Release 1.0

denom_degrees: ndarray[tuple[Any, ...], dtype[int]]
The degrees of the monomials in the denominator.

Note that the leading term is always 1, and there is no need to include degree zero.

derive_props(pars, covar)
Return autocorrelation integral (and other properties) derived from the parame-
ters.

Return type
dict[str, ndarray[tuple[Any, ...], dtype[float]]]

Parameters

• pars (ndarray[tuple[Any, ...], dtype[float]])

• covar (ndarray[tuple[Any, ...], dtype[float]])

get_par_nonlinear()
Return a boolean mask for the nonlinear parameters.

Return type
ndarray[tuple[Any, ...], dtype[bool]]

property name

property npar
Return the number of parameters.

numer_degrees: ndarray[tuple[Any, ...], dtype[int]]
The degrees of the monomials in the numerator.

property par_scales: ndarray[tuple[Any, ...], dtype[float]]
Return the scales of the parameters and the cost function.

solve_linear(freqs, ndofs, amplitudes, weights, nonlinear_pars)
Use linear linear regression to solve a subset of the parameters.

This is a specialized implementation that rewrites the problem in a different form to
solve all parameters with a linear regression.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Parameters

• freqs (ndarray[tuple[Any, ...], dtype[float]])

• ndofs (ndarray[tuple[Any, ...], dtype[float]])

• amplitudes (ndarray[tuple[Any, ...], dtype[float]])

• weights (ndarray[tuple[Any, ...], dtype[float]])

• nonlinear_pars (ndarray[tuple[Any, ...], dtype[float]])

8.5. Application Programming Interface 171

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

class SpectrumModel
Bases: object

Abstract base class for spectrum models.

Subclasses must override all methods that raise NotImplementedError.

The first parameter must have a property that is used when constructing an initial guess:
When the first parameter increases, the model should increase everywhere, and must allow
for an arbitrary increase of the spectrum at all points. This is used to repair initial guesses
that result in a partially negative spectrum.

bounds()
Return parameter bounds for the optimizer.

Return type
list[tuple[float, float]]

compute(freqs, pars, *, deriv=0)
Compute the amplitudes of the spectrum model.

Parameters

• freqs (ndarray[tuple[Any, ...], dtype[float]]) – The frequencies for which the
model spectrum amplitudes are computed.

• pars (ndarray[tuple[Any, ...], dtype[float]]) – The parameter vector. For vec-
torized calculations, the last axis corresponds to the parameter index.

• deriv (int) – The maximum order of derivatives to compute: 0, 1 or 2.

Return type
list[ndarray[tuple[Any, ...], dtype[float]]]

Returns
results – A results list, index corresponds to order of derivative. The shape of
the arrays in the results list is as follows:

• For deriv=0, the shape is ()vec_shape, len(freqs)).

• For deriv=1, the shape is ()vec_shape, len(pars), len(freqs)).

• For deriv=2, the shape is ()vec_shape, len(pars), len(pars), len(freqs))

If some derivatives are independent of the parameters, broadcasting rules may
be used to reduce the memory footprint. This means that vec_shape may be
replaced by a tuple of ones with the same length.

configure_scales(timestep, freqs, amplitudes)
Store essential scale information in the scales attribute.

Other methods may access this information, so this method should be called before
performing any computations.

172 Chapter 8. Development

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

Return type
ndarray[tuple[Any, ...], dtype[float]]

Parameters

• timestep (float)

• freqs (ndarray[tuple[Any, ...], dtype[float]])

• amplitudes (ndarray[tuple[Any, ...], dtype[float]])

derive_props(pars, covar)
Return autocorrelation integral (and other properties) derived from the parame-
ters.

Parameters

• pars (ndarray[tuple[Any, ...], dtype[float]]) – The parameters.

• covar (ndarray[tuple[Any, ...], dtype[float]]) – The covariance matrix of the
parameters.

Return type
dict[str, ndarray[tuple[Any, ...], dtype[float]]]

Returns
props – A dictionary with additional properties, whose calculation requires
model-specific knowledge.

get_par_nonlinear()
Return a boolean mask for the nonlinear parameters.

The returned parameters cannot be solved with the solve_linear method. Models are
free to decide which parameters can be solved with linear regression. For example,
some non-linear parameters may be solved with a linear regression after rewriting the
regression problem in a different form.

Return type
ndarray[tuple[Any, ...], dtype[bool]]

property name

neglog_prior(pars, *, deriv=0)
Minus logarithm of the prior probability density function, if any.

Subclasses may implement (a very weak) prior, if any.

Return type
list[ndarray[tuple[Any, ...], dtype[float]]]

Parameters

• pars (ndarray[tuple[Any, ...], dtype[float]])

• deriv (int)

8.5. Application Programming Interface 173

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

STACIE, Release 1.0

property npar
Return the number of parameters.

property par_scales: ndarray[tuple[Any, ...], dtype[float]]
Return the scales of the parameters and the cost function.

sample_nonlinear_pars(rng, budget)
Return samples of the nonlinear parameters.

Parameters

• rng (Generator) – The random number generator.

• budget (int) – The number of samples to generate.

• freqs – The frequencies for which the model spectrum amplitudes are com-
puted.

• par_scales – The scales of the parameters and the cost function.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Returns
samples – The samples of the nonlinear parameters, array with shape (budget,
num_nonlinear), where num_nonlinear is the number of nonlinear parameters.

scales: dict[str, float]
A dictionary with essential scale information for the parameters and the cost function.

solve_linear(freqs, ndofs, amplitudes, weights, nonlinear_pars)
Use linear linear regression to solve a subset of the parameters.

The default implementation in the base class assumes that the linear parame-
ters are genuinely linear without rewriting the regression problem in a different
form.

Parameters

• freqs (ndarray[tuple[Any, ...], dtype[float]]) – The frequencies for which the
model spectrum amplitudes are computed.

• amplitudes (ndarray[tuple[Any, ...], dtype[float]]) – The amplitudes of the
spectrum.

• ndofs (ndarray[tuple[Any, ...], dtype[float]]) – The number of degrees of
freedom at each frequency.

• weights (ndarray[tuple[Any, ...], dtype[float]]) – Fitting weights, in range [0,
1], to use for each grid point.

• nonlinear_pars (ndarray[tuple[Any, ...], dtype[float]]) – The values of the
nonlinear parameters for which the basis functions are computed.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Returns
• linear_pars – The solved linear parameters.

174 Chapter 8. Development

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

• amplitudes_model – The model amplitudes computed with the solved pa-
rameters.

valid(pars)
Return True when the parameters are within the feasible region.

Return type
bool

Parameters
pars (ndarray[tuple[Any, ...], dtype[float]])

which_invalid(pars)
Return a boolean mask for the parameters outside the feasible region.

Return type
ndarray[tuple[Any, ...], dtype[bool]]

guess(freqs, ndofs, amplitudes, weights, model, rng, nonlinear_budget)
Guess initial values of the parameters for a model.

Parameters

• freqs (ndarray[tuple[Any, ...], dtype[float]]) – The frequencies for which the
model spectrum amplitudes are computed.

• ndofs (ndarray[tuple[Any, ...], dtype[float]]) – The number of degrees of free-
dom at each frequency.

• amplitudes (ndarray[tuple[Any, ...], dtype[float]]) – The amplitudes of the spec-
trum.

• weights (ndarray[tuple[Any, ...], dtype[float]]) – Fitting weights, in range [0, 1],
to use for each grid point.

• model (SpectrumModel) – The model for which the parameters are guessed.

• rng (Generator) – The random number generator.

• nonlinear_budget (int) – The number of samples of the nonlinear parameters
is computed as nonlinear_budget *) num_nonlinear, where num_nonlinear is the
number of nonlinear parameters.

Returns
pars – An initial guess of the parameters.

stacie.plot module

Plot various aspects of the results of the autocorrelation integral estimate.

fixformat(s)
Replace standard scientific notation with prettier unicode formatting.

8.5. Application Programming Interface 175

https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://docs.python.org/3/library/functions.html#int

STACIE, Release 1.0

Return type
str

Parameters
s (str)

plot_acint_estimates(ax, uc, rs)
Plot the sorted autocorrelation integral estimates and their uncertainties.

Parameters

• ax (Axes)

• uc (UnitConfig)

• rs (list[Result])

plot_all_models(ax, uc, r)
Plot all fitted model spectra (for all tested cutoffs).

Parameters

• ax (Axes)

• uc (UnitConfig)

• r (Result)

plot_cutoff_weight(ax, uc, r)
Plot the cutoff criterion as a function of cutoff frequency.

Parameters

• ax (Axes)

• uc (UnitConfig)

• r (Result)

plot_evals(ax, uc, r)
Plot the eigenvalues of the Hessian as a function of the cutoff frequency.

Parameters

• ax (Axes)

• uc (UnitConfig)

• r (Result)

plot_extras(axs, uc, r)

176 Chapter 8. Development

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

STACIE, Release 1.0

Parameters

• axs (ndarray[tuple[Any, ...], dtype[Axes]])

• uc (UnitConfig)

• r (Result)

plot_fitted_spectrum(ax, uc, r , *, legend=True)
Plot the fitted model spectrum.

Parameters

• ax (Axes)

• uc (UnitConfig)

• r (Result)

• legend (bool)

plot_qq(ax, uc, rs)
Make a qq-plot between the predicted and expected distribution of AC integral estimates.

This plot function assumes the true integral is known.

Parameters

• ax (Axes)

• uc (UnitConfig)

• rs (list[Result])

plot_results(path_pdf , rs, uc=None, *, figsize=(7.5, 4.21875), legend=True)
Generate a multi-page PDF with plots of the autocorrelation integral estima-
tion.

Parameters

• path_pdf (str) – The PDF file where all the figures are stored.

• rs (Result | list[Result]) – A single Result instance or a list of them. If the
(first) result instance has spectrum.amplitudes_ref set, theoretical expectations
are included. When multiple results instances are given, only the first one is
plotted in blue. All remaining ones are plotted in light grey.

• uc (UnitConfig | None) – The configuration of the units used for plotting.

• figsize (tuple) – The figure size tuple for matplotlib

• legend (bool)

plot_sanity(ax, uc, r)

8.5. Application Programming Interface 177

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool

STACIE, Release 1.0

Parameters

• ax (Axes)

• uc (UnitConfig)

• r (Result)

plot_spectrum(ax, uc, s, nplot=None)
Plot the empirical spectrum.

Parameters

• ax (Axes)

• uc (UnitConfig)

• s (Spectrum)

• nplot (int | None)

plot_uncertainty(ax, uc, r)
Plot the autocorrelation integral and uncertainty as a function fo cutoff fre-
quency.

Parameters

• ax (Axes)

• uc (UnitConfig)

• r (Result)

rms(x)

stacie.spectrum module

Utility to prepare the spectrum and other inputs for given sequences.

class Spectrum(mean, variance, timestep, nstep, freqs, ndofs, amplitudes, amplitudes_ref=None)
Bases: object

Container class holding all the inputs for the autocorrelation integral esti-
mate.

Parameters

• mean (float)

• variance (float)

• timestep (float)

• nstep (int)

• freqs (ndarray[tuple[Any, ...], dtype[float]])

178 Chapter 8. Development

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

• ndofs (ndarray[tuple[Any, ...], dtype[float]])

• amplitudes (ndarray[tuple[Any, ...], dtype[float]])

• amplitudes_ref (ndarray[tuple[Any, ...], dtype[float]] | None)

amplitudes: ndarray[tuple[Any, ...], dtype[float]]
The spectrum amplitudes averaged over the given input sequences.

amplitudes_ref: ndarray[tuple[Any, ...], dtype[float]] | None
Optionally, the known analytical model of the power spectrum, on the same frequency
grid.

freqs: ndarray[tuple[Any, ...], dtype[float]]
The equidistant frequency axis of the spectrum.

mean: float
The mean of the input sequences multiplied by the square root of the prefactor.

ndofs: ndarray[tuple[Any, ...], dtype[float]]
The number of independent contributions to each amplitude.

property nfreq: int
The number of RFFT frequency grid points.

nstep: int
The number of time steps in the input.

timestep: float
The time between two subsequent elements in the given sequence.

variance: float
The variance of the input sequences multiplied by the prefactor.

without_zero_freq()
Return a copy without the DC component.

Return type
Self

compute_spectrum(sequences, *, prefactors=1.0, timestep=1, include_zero_freq=True)
Compute a spectrum and store all inputs for estimate_acint in a Spectrum instance.

The spectrum amplitudes are computed as follows:

𝐶𝑘 = 1
𝑀

𝑀

∑
𝑚=1

𝐹𝑚ℎ
2𝑁

|
|
||

𝑁−1

∑
𝑛=0

𝑥(𝑚)
𝑛 exp (−𝑖2𝜋𝑛𝑘

𝑁)
|
|
||

2

where:

• 𝐹𝑚 is the given prefactor (may be different for each sequence),

• ℎ is the timestep,

• 𝑁 is the number of time steps in the input sequences,

• 𝑀 is the number of independent sequences,

• 𝑥(𝑚)
𝑛 is the value of the 𝑚-th sequence at time step 𝑛,

8.5. Application Programming Interface 179

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

• 𝑘 is the frequency index.

The sum over 𝑚 simply averages spectra obtained from different sequences. The factor
𝐹𝑚ℎ/2𝑁 normalizes the spectrum so that its zero-frequency limit is an estimate of the auto-
correlation integral.

Parameters

• sequences (Iterable[ndarray[tuple[Any, ...], dtype[float]]] | ndarray[tuple[Any, .
..], dtype[float]]) – The input sequences, which can have several forms. If
prefactors is not None, it can be:

– An array with shape (nindep, nstep) or (nstep,). In case of a 2D array, each
row is a time-dependent sequence. In case of a 1D array, a single sequence
is used.

– An iterable whose items are arrays as described in the previous point. This
option is convenient when a single array does not fit in memory.

If prefactors is None:

– A tuple of a prefactor (or an array of prefactors) and a sequences array,
either 1D or 2D as described above.

– An iterable whose items are tuples of a prefactor (or an array of prefactors)
and a sequences array, either 1D or 2D as described above.

All sequences are assumed to be statistically independent and have length
nstep. (Time correlations within one sequence are fine, obviously.) We recom-
mend using multiple independent sequences to reduce uncertainties. Arrays
must be used. (lists of floating point values are not supported.)

• prefactors (Iterable[ndarray[tuple[Any, ...], dtype[float]]] | ndarray[tuple[Any,
...], dtype[float]] | None) – A positive factor to be multiplied with the autocor-
relation function to give it a physically meaningful unit. This argument can be
given in multiple forms:

– None, in which case the sequences are assumed to be one or more (prefac-
tors, sequences) tuples.

– A single floating point value: the same prefactor is used for all input se-
quences.

– A single array with shape (nindep,): each sequence is multiplied with the
corresponding prefactor.

– An iterable whose items are of the form described in the previous two
points. In this case, the sequences must also be given as an iterable with
the same length.

• timestep (float) – The time step of the input sequence.

• include_zero_freq (bool) –When set to False, the DC component of the spectrum
is discarded.

Return type
Spectrum

Returns
spectrum – A Spectrum object holding all the inputs needed to estimate the integral
of the autocorrelation function.

180 Chapter 8. Development

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

STACIE, Release 1.0

stacie.synthetic module

Generate synthetic time-correlated data for algorithmic testing and validation.

generate(psd, timestep, nseq, nstep=None, rng=None)
Generate sequences with a given power spectral density.

Parameters

• psd (ndarray[tuple[Any, ...], dtype[float]]) – The power spectral density.
The normalization of the PSD is consistent compute_spectrum when using
prefactors=2.0 and the given timestep as arguments. The empirical amplitudes
of the spectrum will then be consistent with given PSD. Hence psd[0] is the
ground truth of the autocorrelation integral.

• timestep (float) – The time between two subsequent elements in the sequence.

• nseq (int) – The number of sequences to generate.

• nstep (int | None) – The number of time steps in each sequence. When not given,
the number of steps is 2 * (len(psd) - 1). This argument can be used to truncate
the sequences, which can be useful for creating aperiodic signals.

• rng (Generator | None) – The random number generator.

Return type
ndarray[tuple[Any, ...], dtype[float]]

Returns
sequences – The generated sequences, a 2D array with shape (nseq, nstep), where
nstep = 2 * (len(psd) - 1) if not provided.

stacie.utils module

Utilities for preparing inputs.

exception PositiveDefiniteError
Bases: ValueError

Raised when a matrix is not positive definite.

class UnitConfig(clevel=0.95, *, acint_symbol='\\\\mathcal{I}', acint_unit_str='', acint_unit=1.0,
acint_fmt='.2e', freq_unit_str='', freq_unit=1.0, freq_fmt='.2e', time_unit_str='',
time_unit=1.0, time_fmt='.2e')

Bases: object

Unit configuration for plotting function.

Note that values are divided by their units before plotting. This class only affects
screen output and plotting. It never influences numerical values in STACIE’s computa-
tions.

Parameters

• clevel (float)

• acint_symbol (str)

• acint_unit_str (str)

8.5. Application Programming Interface 181

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/random/generator.html#numpy.random.Generator
https://docs.python.org/3/library/constants.html#None
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

STACIE, Release 1.0

• acint_unit (float)

• acint_fmt (str)

• freq_unit_str (str)

• freq_unit (float)

• freq_fmt (str)

• time_unit_str (str)

• time_unit (float)

• time_fmt (str)

acint_fmt: str
The format string for an autocorrelation integral.

acint_symbol: str
The symbol used for the autocorrelation integral.

acint_unit: float
The unit of an autocorrelation integral.

acint_unit_str: str
The text used for the autocorrelation integral unit.

property clb: float
The confidence lower bound used to plot confidence intervals.

clevel: float
The confidence level used to plot confidence intervals.

property cub: float
The confidence upper bound used to plot confidence intervals.

freq_fmt: str
The format string for a frequency.

freq_unit: float
The unit of frequency.

freq_unit_str: str
The text used for the frequency unit.

time_fmt: str
The format string for a time value.

time_unit: float
The unit of time.

time_unit_str: str
The text used for the time unit.

block_average(sequences, size)
Reduce input sequences by taking block averages.

This reduces the maximum frequency of the frequency axis of the spectrum, which may be
useful when the time step is much shorter than the exponential autocorrelation time.

A time step ℎ = 𝜏exp/(20𝜋) (after taking block averages) is recommended, not
larger.

182 Chapter 8. Development

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

STACIE, Release 1.0

Parameters

• sequences (ndarray[tuple[Any, ...], dtype[float]]) – Input sequence(s) to be block
averaged, with shape (nseq, nstep). A single sequence with shape (nstep,) is
also accepted.

• size (int) – The block size

Return type
ndarray[tuple[Any, ...], dtype[TypeVar(_ScalarT, bound= generic)]]

Returns
blav_sequences – Sequences of block averages, with shape (nseq, nstep // size)

label_unit(label, unit_str)
Format a label with the unit string as label [unit].
When the unit is "" or None, the unit is omitted.

Parameters

• label (str) – The label text.

• unit_str (str | None) – The unit string.

Return type
str

mixture_stats(means, covars, weights)
Compute the statistics of the (Gaussian) mixture distribution.

Parameters

• means (ndarray[tuple[Any, ...], dtype[float]]) – The means of the mixture com-
ponents. Weighted averages are taken over the first index. Shape is (ncomp,
nfeature) or (ncomp,). If the shape is (ncomp,), the means are interpreted as
scalars. If the shape is (ncomp, nfeature), the means are interpreted as vectors.

• covars (ndarray[tuple[Any, ...], dtype[float]]) – The covariances of the mixture
components. If the shape matches that of the means argument, this array is
interpreted as a diagonal covariance matrix. If the shape is (ncomp, nfeature,
nfeature), this array is interpreted as full covariance matrices.

• weights (ndarray[tuple[Any, ...], dtype[float]]) – The weights of the mixture
components. Shape is (ncomp,). The weights are normalized to sum to 1.

Returns
• mean – The mean of the mixture distribution. Shape is (nfeature,).

• covar – If the input covariance matrix is diagonal, the output covariance matrix
is also diagonal and has shape (nfeature,). If the input covariance matrix is full,
the output covariance matrix is also full and has shape (nfeature, nfeature).

robust_dot(scales, evals, evecs, other)
Compute the dot product of a robustly diagonalized matrix with another matrix.

• The first three arguments are the output of robust_posinv.

8.5. Application Programming Interface 183

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float

STACIE, Release 1.0

• To multiply with the inverse, just use element-wise inversion of scales and evals.

Parameters
• scales – The scales used to precondition the matrix.

• evals – The eigenvalues of the preconditioned matrix.

• evecs – The eigenvectors of the preconditioned matrix.

• other – The other matrix to be multiplied. 1D or 2D arrays are accepted.

Returns
result – The result of the dot product.

robust_posinv(matrix)
Compute the eigenvalues, eigenvectors and inverse of a positive definite symmetric matrix.

This function is a robust version of numpy.linalg.eigh and numpy.linalg.inv that can handle
large variations in order of magnitude of the diagonal elements. If the matrix is not positive
definite, a ValueError is raised.

Parameters
matrix (ndarray[tuple[Any, ...], dtype[float]]) – Input matrix to be diagonalized.

Return type
tuple[ndarray[tuple[Any, ...], dtype[TypeVar(_ScalarT, bound= generic)]], ndar-
ray[tuple[Any, ...], dtype[TypeVar(_ScalarT, bound= generic)]], ndarray[tuple[Any,
...], dtype[TypeVar(_ScalarT, bound= generic)]], ndarray[tuple[Any, ...],
dtype[TypeVar(_ScalarT, bound= generic)]]]

Returns
• scales – The scales used to precondition the matrix.

• evals – The eigenvalues of the preconditioned matrix.

• evecs – The eigenvectors of the preconditioned matrix.

• inverse – The inverse of the original.

split(sequences, nsplit)
Split input sequences into shorter parts of equal length.

This reduces the resolution of the frequency axis of the spectrum, which may be useful when
the sequence length ismuch longer than the exponential autocorrelation time.

Parameters

• sequences (ndarray[tuple[Any, ...], dtype[float]]) – Input sequence(s) to be split,
with shape (nseq, nstep). A single sequence with shape (nstep,) is also ac-
cepted.

• nsplit (int) – The number of splits.

Return type
ndarray[tuple[Any, ...], dtype[TypeVar(_ScalarT, bound= generic)]]

Returns

184 Chapter 8. Development

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/typing.html#typing.TypeVar
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.generic

STACIE, Release 1.0

split_sequences – Splitted sequences, with shape (nseq * nsplit, nstep // nsplit).

Module contents

The STACIE package.

8.5. Application Programming Interface 185

STACIE, Release 1.0

186 Chapter 8. Development

CHAPTER 9

Code of Conduct

9.1 Our Pledge
We as members, contributors, and leaders pledge to make participation in our community a
harassment-free experience for everyone, regardless of age, body size, visible or invisible dis-
ability, ethnicity, sex characteristics, gender identity and expression, level of experience, educa-
tion, socio-economic status, nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive,
and healthy community.

9.2 Our Standards
Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning
from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their
explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

187

STACIE, Release 1.0

9.3 Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of acceptable be-
havior and will take appropriate and fair corrective action in response to any behavior that they
deem inappropriate, threatening, offensive, or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, com-
mits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct,
and will communicate reasons for moderation decisions when appropriate.

9.4 Scope
This Code of Conduct applies within all community spaces, and also applies when an individual is
officially representing the community in public spaces. Examples of representing our community
include using an official email address, posting via an official social media account, or acting as
an appointed representative at an online or offline event.

9.5 Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the com-
munity leaders responsible for enforcement at Toon.Verstraelen@UGent.be All complaints will be
reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any
incident.

9.6 Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining the conse-
quences for any action they deem in violation of this Code of Conduct:

9.6.1 1. Correction
Community Impact: Use of inappropriate language or other behavior deemed unprofessional or
unwelcome in the community.

Consequence: A private, written warning from community leaders, providing clarity around the
nature of the violation and an explanation of why the behavior was inappropriate. A public
apology may be requested.

9.6.2 2. Warning
Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the
people involved, including unsolicited interaction with those enforcing the Code of Conduct, for
a specified period of time. This includes avoiding interactions in community spaces as well as
external channels like social media. Violating these terms may lead to a temporary or permanent
ban.

188 Chapter 9. Code of Conduct

mailto:Toon.Verstraelen@UGent.be

STACIE, Release 1.0

9.6.3 3. Temporary Ban
Community Impact: A serious violation of community standards, including sustained inappro-
priate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the
community for a specified period of time. No public or private interaction with the people in-
volved, including unsolicited interaction with those enforcing the Code of Conduct, is allowed
during this period. Violating these terms may lead to a permanent ban.

9.6.4 4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community standards, including
sustained inappropriate behavior, harassment of an individual, or aggression toward or dispar-
agement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

9.7 Attribution
This Code of Conduct is adapted from the Contributor Covenant, version 2.1, available at https:
//www.contributor-covenant.org/version/2/1/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.
contributor-covenant.org/faq. Translations are available at https://www.contributor-covenant.
org/translations.

9.7. Attribution 189

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations
https://www.contributor-covenant.org/translations

STACIE, Release 1.0

190 Chapter 9. Code of Conduct

Python Module Index

s
stacie, 185
stacie.conditioning, 158
stacie.cost, 160
stacie.cutoff, 161
stacie.estimate, 163
stacie.model, 168
stacie.plot, 175
stacie.spectrum, 178
stacie.synthetic, 181
stacie.utils, 181

191

STACIE, Release 1.0

192 Python Module Index

Index

A
ACF, 153
acint (Result property), 164
acint_fmt (UnitConfig attribute), 182
acint_std (Result property), 164
acint_symbol (UnitConfig attribute), 182
acint_unit (UnitConfig attribute), 182
acint_unit_str (UnitConfig attribute), 182
amplitudes (LowFreqCost attribute), 160
amplitudes (Spectrum attribute), 179
amplitudes_ref (Spectrum attribute), 179

B
block_average() (in module stacie.utils), 182
bounds() (ExpPolyModel method), 168
bounds() (PadeModel method), 170
bounds() (SpectrumModel method), 172

C
clb (UnitConfig property), 182
clevel (UnitConfig attribute), 182
compute() (ExpPolyModel method), 168
compute() (PadeModel method), 170
compute() (SpectrumModel method), 172
compute_spectrum() (in module stacie.spectrum),

179
cond (CV2LCriterion attribute), 162
ConditionedCost (class in stacie.conditioning), 158
configure_scales() (SpectrumModel method),

172
corrtime_exp (Result property), 164
corrtime_exp_std (Result property), 164
corrtime_int (Result property), 164
corrtime_int_std (Result property), 164
cost (ConditionedCost attribute), 158
cost_scale (ConditionedCost attribute), 159
cub (UnitConfig property), 182
cutoff_criterion (Result attribute), 164
CutoffCriterion (class in stacie.cutoff), 162
CV2LCriterion (class in stacie.cutoff), 161

D
degrees (ExpPolyModel attribute), 168
denom_degrees (LorentzModel attribute), 169
denom_degrees (PadeModel attribute), 170
derive_props() (ExpPolyModel method), 168
derive_props() (LorentzModel method), 169
derive_props() (PadeModel method), 171
derive_props() (SpectrumModel method), 173

E
entropy_gamma() (in module stacie.cost), 160
estimate_acint() (in module stacie.estimate), 164
expected() (LowFreqCost method), 160
ExpPolyModel (class in stacie.model), 168

F
fcut (Result property), 164
fcut_factor (CV2LCriterion attribute), 162
fit_model_spectrum() (in module stacie.estimate),

166
fixformat() (in module stacie.plot), 175
freq_fmt (UnitConfig attribute), 182
freq_unit (UnitConfig attribute), 182
freq_unit_str (UnitConfig attribute), 182
freqs (LowFreqCost attribute), 160
freqs (Spectrum attribute), 179
from_reduced() (ConditionedCost method), 159
funcgrad() (ConditionedCost method), 159

G
generate() (in module stacie.synthetic), 181
get_par_nonlinear() (ExpPolyModel method), 168
get_par_nonlinear() (PadeModel method), 171
get_par_nonlinear() (SpectrumModel method),

173
guess() (in module stacie.model), 175

H
hess() (ConditionedCost method), 159
history (Result attribute), 164

193

STACIE, Release 1.0

L
label_unit() (in module stacie.utils), 183
LAMMPS, 153
linear_weighted_regression() (in module sta-

cie.cutoff), 162
log (CV2LCriterion attribute), 162
logpdf_gamma() (in module stacie.cost), 161
LorentzModel (class in stacie.model), 169
LowFreqCost (class in stacie.cost), 160

M
MD, 153
mean (Spectrum attribute), 179
mixture_stats() (in module stacie.utils), 183
model (LowFreqCost attribute), 160
model (Result attribute), 164
module

stacie, 185
stacie.conditioning, 158
stacie.cost, 160
stacie.cutoff, 161
stacie.estimate, 163
stacie.model, 168
stacie.plot, 175
stacie.spectrum, 178
stacie.synthetic, 181
stacie.utils, 181

N
name (CutoffCriterion property), 162
name (CV2LCriterion property), 162
name (ExpPolyModel property), 169
name (LorentzModel property), 170
name (PadeModel property), 171
name (SpectrumModel property), 173
ncut (Result property), 164
ndofs (LowFreqCost attribute), 160
ndofs (Spectrum attribute), 179
neff (Result property), 164
neglog_prior() (SpectrumModel method), 173
nfreq (Spectrum property), 179
npar (ExpPolyModel property), 169
npar (PadeModel property), 171
npar (SpectrumModel property), 173
NpT, 153
nstep (Spectrum attribute), 179
numer_degrees (LorentzModel attribute), 170
numer_degrees (PadeModel attribute), 171
NVE, 153
NVT, 153

P
PadeModel (class in stacie.model), 170
par_scales (ConditionedCost attribute), 159
par_scales (ExpPolyModel property), 169

par_scales (PadeModel property), 171
par_scales (SpectrumModel property), 174
plot_acint_estimates() (in module stacie.plot),

176
plot_all_models() (in module stacie.plot), 176
plot_cutoff_weight() (in module stacie.plot), 176
plot_evals() (in module stacie.plot), 176
plot_extras() (in module stacie.plot), 176
plot_fitted_spectrum() (in module stacie.plot),

177
plot_qq() (in module stacie.plot), 177
plot_results() (in module stacie.plot), 177
plot_sanity() (in module stacie.plot), 177
plot_spectrum() (in module stacie.plot), 178
plot_uncertainty() (in module stacie.plot), 178
PositiveDefiniteError, 181
precondition (CV2LCriterion attribute), 162
props (Result attribute), 164
PSD, 153

R
regularize (CV2LCriterion attribute), 162
relerr_threshold (LorentzModel attribute), 170
Result (class in stacie.estimate), 163
rms() (in module stacie.plot), 178
robust_dot() (in module stacie.utils), 183
robust_posinv() (in module stacie.utils), 184

S
sample_nonlinear_pars() (SpectrumModel

method), 174
scales (SpectrumModel attribute), 174
solve_linear() (ExpPolyModel method), 169
solve_linear() (PadeModel method), 171
solve_linear() (SpectrumModel method), 174
Spectrum (class in stacie.spectrum), 178
spectrum (Result attribute), 164
SpectrumModel (class in stacie.model), 171
split() (in module stacie.utils), 184
stacie

module, 185
stacie.conditioning

module, 158
stacie.cost

module, 160
stacie.cutoff

module, 161
stacie.estimate

module, 163
stacie.model

module, 168
stacie.plot

module, 175
stacie.spectrum

module, 178
stacie.synthetic

194 Index

STACIE, Release 1.0

module, 181
stacie.utils

module, 181
summarize_results() (in module stacie.estimate),

167
switch_func() (in module stacie.cutoff), 163

T
time_fmt (UnitConfig attribute), 182
time_unit (UnitConfig attribute), 182
time_unit_str (UnitConfig attribute), 182
timestep (Spectrum attribute), 179
to_reduced() (ConditionedCost method), 159

U
Uncertainty, 153
UnitConfig (class in stacie.utils), 181

V
valid() (SpectrumModel method), 175
variance (Spectrum attribute), 179
varlogp_gamma() (in module stacie.cost), 161

W
weights (LowFreqCost attribute), 160
which_invalid() (SpectrumModel method), 175
without_zero_freq() (Spectrum method), 179

Index 195

	Getting Started
	Installation
	Licenses
	Source code license
	Documentation license

	Usage Overview
	How to Cite
	Main STACIE Paper
	Shear Viscosity Calculations

	Theory
	Notation
	Special functions
	Statistics
	Discrete Fourier Transform

	STACIE Algorithm Overview
	Continuous time, infinite domain
	Discretized time, periodic sequences
	In terms of ensemble averages
	In terms of sampling estimates

	Model Spectrum
	1. ExpPoly Model
	2. Pade Model
	3. Lorentz Model

	Parameter Estimation
	Statistics of the Sampling Power Spectral Distribution
	Regression
	Regression Cost Z-score

	Frequency Cutoff
	Effective number of fitting points
	Grid of Cutoff Frequencies
	Cross-Validation
	Marginalization Over the Cutoff Frequency
	Cutoff Criterion Z-score

	Preparing Inputs
	How to Prepare Sufficient Inputs for STACIE?
	Step 1: Guesstimate the Number of Independent Sequences
	Step 2: Test the Sufficiency of the Number of Steps and Increase if Necessary

	Reducing Storage Requirements with Block Averages
	Recommendations for MD Simulations
	Finite Size Effects
	Choice of Ensemble
	Thermostat and Barostat Settings
	Block Averages

	Properties Derived from the Autocorrelation Function
	Uncertainty of the Mean of Time-Correlated Data
	Derivation
	How to Compute with STACIE?

	Integrated and Exponential Autocorrelation Time
	Definitions
	Which Definition Should I Use?
	How to Compute with STACIE?

	Shear Viscosity
	Five Independent Anisotropic Pressure Contributions of an Isotropic Liquid
	How to Compute with STACIE?

	Bulk Viscosity
	How to Compute with STACIE?

	Thermal Conductivity
	How to Compute with STACIE?

	Ionic Electrical Conductivity
	Nernst-Einstein Approximation
	How to Compute with STACIE?

	Diffusion Coefficient
	How to Compute with STACIE?

	Worked Examples
	Minimal Example
	Library Imports and Matplotlib Configuration
	The Markov Process
	Data generation
	Analysis With STACIE, Using the ExpPoly Model
	Analysis With STACIE, Using the Lorentz Model
	Regression Tests
	Derivation of the Autocorrelation Integral

	Uncertainty of the Mean of Time-Correlated Data
	Library Imports and Matplotlib Configuration
	Data Generation
	Uncertainty Quantification
	Precise Mean With Numerical Quadrature
	Autocorrelation time
	Regression Tests

	Applicability of the Lorentz Model
	Library Imports and Matplotlib Configuration
	Data Generation
	Spectrum
	Error of the Mean
	Regression Tests

	Diffusion on a Surface with Newtonian Dynamics
	Library Imports and Matplotlib Configuration
	Data Generation
	Potential energy surface
	Newtonian Dynamics
	Demonstration of Deterministic Choas

	Surface diffusion without block averages
	Surface diffusion with block averages
	Regression Tests

	Shear Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS)
	Library Imports and Configuration
	Analysis of the Equilibration Runs
	Analysis of the Initial Production Simulations
	Analysis of the Production Simulations
	Comparison to Literature Results
	Validation of the Production Runs
	Validation of the Independence of the Anistropic Contributions
	Validation of the consistency of the Anisotropic Contributions
	Regression Tests

	Bulk Viscosity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS)
	Library Imports and Matplotlib Configuration
	Analysis of the Production Simulations
	Comparison to Literature Results
	Regression Tests

	Thermal Conductivity of a Lennard-Jones Liquid Near the Triple Point (LAMMPS)
	Library Imports and Configuration
	Analysis of the Production Simulations
	Comparison to Literature Results
	Regression Tests

	Ionic Electrical Conductivity of Molten Sodium Chloride at 1100 K (OpenMM)
	Library Imports and Configuration
	Analysis of the NpT Equilibration Runs
	Reusable Code for the Analysis of the Production Runs
	Analysis of the Initial Production Simulation
	Analysis of the Extended Production Simulation (8000 + 8000 steps)
	Analysis of the Extended Production Simulation (8000 + 8000 + 184000 steps)
	Density
	Comparison to Literature Results
	Technical Details of the Analysis of the Literature Data
	Validation of the Production Runs
	Regression Tests

	Utility Module for Plots Reused in Multiple Examples.

	References
	Glossary
	Development
	Contributor Guide
	Ground Rules
	How to Report a Bug
	First-Time Contributors
	Contribution Workflow

	Development Setup
	Repository, Tests and Documentation Build
	Documentation Live Preview

	Changelog
	Unreleased
	1.0.0 - 2025-06-26
	Changed

	1.0.0rc1 - 2025-06-25

	How to Make a Release
	Software packaging and deployment
	Documentation build and deployment

	Application Programming Interface
	stacie package
	Submodules
	stacie.conditioning module
	stacie.cost module
	stacie.cutoff module
	stacie.estimate module
	stacie.model module
	stacie.plot module
	stacie.spectrum module
	stacie.synthetic module
	stacie.utils module

	Module contents

	Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	Python Module Index
	Index

